
Automatic Speech Data Processing with Praat1

Lecture Notes

Ingmar Steiner
steiner@coli.uni-sb.de

Winter Semester 2007/2008

1www.praat.org

mailto:steiner@coli.uni-sb.de
http://www.praat.org/

Contents

0 A Short Preview 7
0.1 Automating Praat . 7
0.2 The Script Editor . 7
0.3 Batch open script . 8

0.3.1 Repeating commands . 8
0.3.2 for loop . 9
0.3.3 Strings file list . 9
0.3.4 Simple dialog windows . 10
0.3.5 Good scripting practices 11

1 Scripting Fundamentals 13
1.1 My first program . 13
1.2 Scripting elements . 14

1.2.1 Comments . 15
1.3 Variables . 15

1.3.1 Variable names . 17
1.3.2 Variable types . 18

1.4 Operators and functions . 19
1.4.1 Mathematics . 19
1.4.2 String handling . 20
1.4.3 Variable evaluation . 23
1.4.4 Comparison operators . 24

1.5 Flow control . 25
1.5.1 Conditions . 25
1.5.2 Loops . 26

1.6 Arrays . 28
1.7 Procedures . 30

1.7.1 Arguments to procedures 31
1.7.2 Local variables . 35

1.8 Arguments to scripts (part 1) . 36
1.9 External scripts . 36

1.9.1 include . 36
1.9.2 execute . 37

1.10 File operations . 37
1.10.1 Paths . 37
1.10.2 File Input/Output . 38
1.10.3 Deleting files . 39
1.10.4 Checking for file availability 39

1

1.11 Refined output . 39
1.11.1 Controlled crash with exit 40

1.12 Self-executing Praat scripts . 41
1.12.1 Linux . 41
1.12.2 Windows . 42

1.13 System calls . 42

2 Praat GUI 43
2.1 Object Window . 43

2.1.1 Menu bar . 44
2.1.2 Objects . 44
2.1.3 Dynamic menu . 45

2.2 Script Editor . 45
2.2.1 Running scripts . 46
2.2.2 Command history . 46

2.3 Output . 46
2.3.1 Info Window . 46
2.3.2 Error messages . 47
2.3.3 Other forms of output . 47

2.4 Objects in scripts . 48
2.4.1 Object selection commands 48
2.4.2 Querying selected objects 49

2.5 Praat command syntax . 50
2.5.1 Praat commands in scripts 51

2.6 Editor scripting . 53
2.6.1 Editor scripts . 54
2.6.2 Sound Editors . 54
2.6.3 Querying the Editors . 55

2.7 Picture Window . 56
2.7.1 Picture Window basics . 56
2.7.2 Custom drawing commands 58
2.7.3 Data analysis with the Picture Window 62

2

List of Figures

0.1 The Praat Object Window in Linux/KDE3, with a Sound loaded 8
0.2 The Script Editor window . 8
0.3 Dialog window of batchOpen4.praat 11

2.1 Praat Object Window . 44
2.2 Error message about faulty scripting command 47
2.3 Error message about faulty Praat command 47
2.4 Progress Window showing To Pitch... process 48
2.5 Praat Object Window with various objects selected 49
2.6 Example of other argument types 52
2.7 Show analyses... dialog . 54
2.8 Spectrum: Draw... dialog . 57
2.9 Empty Picture Window . 57
2.10 Result of Listing 2.4 . 57
2.11 Result of Listing 2.4, but exported as EPS 59
2.12 Axes... dialog . 60
2.13 Coordinate system from (0, 0) to (1, 1) 61
2.14 A few things drawn in . 61
2.15 Same as Figure 2.14, but with a different scale 62

3

List of Tables

1.1 Predefined variables . 19
1.2 Mathematical operators and functions (selection) 20
1.3 String functions (selection) . 21
1.4 Comparison operators . 25
1.5 Examples of absolute paths . 37

2.1 Color commands and their colors 60

4

Listings

0.1 batchOpen1.praat . 8
0.2 batchOpen2.praat . 9
0.3 batchOpen3.praat . 9
0.4 batchOpen4.praat . 10
0.5 batchOpen5.praat . 12
1.1 helloworld.praat . 13
1.2 helloWorld.cpp . 14
1.3 helloWorld.java . 14
1.4 helloWorld.scm . 14
1.5 outputPitchParameters.praat 17
1.6 doubleQuote.praat . 18
1.7 simpleStringFunctions.praat 21
1.8 ifThenElse.praat . 25
1.9 repeatUntil.praat . 26
1.10 whileEndwhile.praat . 27
1.11 whileFor.praat . 28
1.12 forEndfor.praat . 28
1.13 nestingProblem.praat . 29
1.14 tableOfProducts.praat . 30
1.15 procedures.praat . 31
1.16 procedures2.praat . 31
1.17 procedures3.praat . 31
1.18 procedures4.praat . 32
1.19 procedures5.praat . 32
1.20 procedures6.praat . 33
1.21 numericArguments.praat . 34
1.22 procedures7.praat . 35
1.23 procedures8.praat . 35
1.24 form.praat . 36
1.25 foo.txt . 38
1.26 readFoo.praat . 38
1.27 print.praat . 39
1.28 exit.praat . 40
1.29 assert.praat . 40
1.30 helloExe.praat . 41
2.1 arrayOfIDs.praat . 50
2.2 editor.praat . 53
2.3 arrayOfIDs.praat . 55
2.4 draw1kHzSpectrum.praat . 56

5

2.5 durationBarGraph.praat . 62

6

Chapter 0

A Short Preview

This chapter will showcase a short test run in Praat, which demonstrates a few of
the things yet to come by explaining a simple script and what it does. It requires
nothing from the reader except an open mind, and a willingness to postpone
full comprehension until later chapters, where everything will be explained from
the ground up.

0.1 Automating Praat

We start Praat by executing the praat binary (or praat.exe under Windows),
which brings up the Praat Object Window, as well as the Picture Window. Both
are, for now, empty, and since we don’t need the Picture Window yet, we can
simply close it (it will open again as required).

To load a wav file, we use the command Read from file... from the Read
menu, which opens the usual file selection dialog window. Once we select a file,
that file is loaded into the object list (unless of course the file is of a type that
Praat can’t recognize, in which case we get an error message instead). For now,
let’s assume I want to load a file called aufnahme 1.wav.

0.2 The Script Editor

Let’s do the same thing again, but by running a script.
Select the command New Praat script... from the Praat menu to open a fresh

Script Editor Window. The Script Editor is nothing but a simple text editor,
which we will use to develop our scripts. There is a history mechanism in Praat
that keeps track of all commands issued and objects selected, which is accessible
via the Paste history command in the Edit menu of the Script Editor. Using this
command, we see that the two lines correspond exactly to what we just did, i.e.
load a wav file and open the Script Editor. In fact, the commands now in the
script are precisely what the commands in the menu of the Object Window are
called, all the way to the ... at the end of the file opening command! (This
signifies that the Read from file... command takes an argument, namely the
path to the file it opened.)

We can run the script with the Run command from the Run menu, and voilà!
it loads the Sound file again and opens another Script Editor (which we close

7

Figure 0.1: The Praat Object Window
in Linux/KDE3, with a Sound loaded

Figure 0.2: The Script Editor window

again, since we already have one).
Let’s start a new script by using the New command from the File menu of

the Script Editor (selecting “Discard & New” when prompted). Let’s save this
script as testrun.praat (using the Save as... command from the File menu),
because that will allow us to use relative paths.

0.3 Batch open script

Checking the sounds directory, we have four wav files that we can load in this
fashion. So let’s open them all at once (as one “batch”), because having to click
on Read from file... and selected one file multiple times is just plain annoying.

0.3.1 Repeating commands

We could write a script like this:

Listing 0.1: batchOpen1.praat
Read from file ... sounds/aufnahme_1.wav

Read from file ... sounds/aufnahme_2.wav

Read from file ... sounds/aufnahme_3.wav

Read from file ... sounds/aufnahme_4.wav

8

0.3.2 for loop

But that’s not really elegant, because we’re doing things repeatedly that differ
only in a single number. So instead, we could do this:

Listing 0.2: batchOpen2.praat
for number from 1 to 4

Read from file ... sounds/aufnahme_ 'number '.wav

endfor

This involves a for loop, which takes a counter variable called number, sets it
to the value given after the from (here, 1), and does everything until the endfor

line, at which point it adds 1 to the value of number and checks whether number is
less than or equal to the number we supplied after the to (here, 4). If yes, then
it repeats everything between the for and endfor lines (increasing the value of
number again), if not, the loop is finished (and the rest of the script is processed).

This means that the Read from file... command is actually run four times.
As the argument to the command, we’ve used the variable number again, and
by enclosing it in ‘single quotes’, we ensured that its value (first 1, then 2, and
so on), rather than its name ("number") is used, so that the argument to the
Read from file... command (the filename) actually changes every time we go
through the loop.

0.3.3 Strings file list

What if we have different names for the files? What if we want to open all wav
files in a directory, regardless of their names?

Praat has a type of object called Strings, which is essentially a list of strings,
each string being a list of characters (letters, numbers, etc.). There is a command
called Create Strings from file list..., which looks at the contents of a directory
and returns all files matching a given pattern as the strings of a Strings object.
Once we have a Strings object, we can use commands like Get number of strings

and Get string... to print information about the object (and its contents) to the
Info Window.

Let’s write a script like this:

Listing 0.3: batchOpen3.praat
Create Strings as file list ... wavList sounds /*.wav

numberOfStrings = Get number of strings

for stringCounter from 1 to numberOfStrings

select Strings wavList

filename$ = Get string ... 'stringCounter '

Read from file ... sounds/'filename$ '

endfor

First, we create a Strings object called wavList (we could just as well call
it something else, though), which contains the names of all files in the sounds
directory ending in .wav. Since we can’t be sure how many there will be and
have to tell the for loop how many times we want it to go around, we use the
Get number of strings command from the Query menu of the Strings object’s dy-
namic menu (to the right of the object list). The output of this query command
is redirected into another variable, which we call numberOfStrings (again, this
could be anything, but we want to use names that make sense).

9

Then comes the loop. Inside the loop, we’ll skip over the first line for now, and
look at the Get string... command (again, from the Query menu). This one takes
an argument (remember? that’s what the ... means), namely the index of the
string we want to know. An argument of 1 returns the first string, 2, the second,
and, 'numberOfStrings', the last one (in this script, anyway). Since we want a
different string each time the loop goes through, we use 'stringCounter' as the
argument (because stringCounter is our loop’s counter variable). But again, we
redirect this query command’s output (the stringCounterth string, i.e. filename)
into a variable, which we call, for the sake of transparency, filename$. The reason
there is a $ at the end of this variable’s name is that it is a string variable, not
a numeric variable, which is the type of output of the Get string... command.
And finally, we use that string variable in the Read from file... command as
before.

One pitfall we’ve avoided is that once the first wav file is loaded, the selection
in the object list changes so that only that Sound object is selected. However, the
next time the script goes through the loop, the Get string... command will cause
an error, because that command only works when a Strings object is selected.
This error can be avoided if we explicitly select the Strings object containing our
file list in the loop, before we use the Get string... command. This is done with
the select command, which takes either an object’s numeric ID or, as here, its
class and name. In this case, we know the class (Strings), and the name as well
(wavList), because we just assigned it. Usually however, using the ID number is
preferable.

0.3.4 Simple dialog windows

What if we want to use this script for a different directory and open other files
there? Wouldn’t it be nice to have a way for Praat to ask which directory it
should look inside and open all files of a specific type out of?

Let’s go through the following script:

Listing 0.4: batchOpen4.praat
form Batch open

comment Open all files of...

choice Type: 1

button wav

button TextGrid

comment ...in...

sentence Directory sounds

endform

Create Strings as file list ... 'type$ 'List 'directory$ '/*.'type$ '

numberOfStrings = Get number of strings

for stringCounter from 1 to numberOfStrings

select Strings 'type$ 'List

filename$ = Get string ... 'stringCounter '

Read from file ... 'directory$ '/'filename$ '

endfor

The first part of the script consists of something that looks like a form “loop”,
but it actually defines a dialog window that Praat will display when the script is
run, which prompts the user for certain arguments to be used during the second
part of the script.

See if you can figure out what the lines between the form and endform do:

10

Figure 0.3: Dialog window of batchOpen4.praat

The choice and sentence lines are the actual point of this form, since they
provide variables whose values are filled in by the user. So once the user clicks the
“OK” button in the dialog window, the script continues with two new variables,
type$ and directory$1, which contain either "wav" or "TextGrid", and "sounds" (or
whatever the user entered into the text field), respectively. The details of the
form loop will be explained later.

The second part of the script is basically the same as the script in the
previous section, except that references to a “hard-coded” (i.e. fixed) directory
sounds/ have been replaced with 'directory$', which is whatever the user entered
in the dialog window, and similarly for references to wav as the file type.

0.3.5 Good scripting practices

It’s generally advisable to make a script as robust as possible, with portability
and scalability in mind. This means that we should add a few things to that
last script.

For instance, it is quite possible that the user will accidentally input a direc-
tory in the dialog window that does not exist or is not readable. In this case, the
script will simply terminate with an error generated by Praat directly, which we
couldn’t do any better.

On the other hand, if the directory exists (and a Strings object is successfully
created), but contains no files of the selected type, the Strings will be empty, and
no files will be loaded. It would be nice for the user to receive some information
about this, so we’ll add a condition with if...endif and cause an error window
of our own to pop up, using exit.

And finally, after the script is finished, we no longer need the Strings object,
so we simply remove it. However, to be really sure we get the right object (in
case there happens to be another object of the same class with the same name in
the object list), we’ll use the Strings object’s numeric ID, which we get with the
selected() function, select it (with select or plus), and use the Remove command,
which is actually just a button in the Praat Object Window, below the object
list.

Just to be explicit, we’ll also finish the script by selecting all of the objects
it loaded, so that the user knows immediately what happened. For this, we’ll

1Actually, three new variables: the selection of Type is additionally stored in the numeric
variable type, which contains the number of the selected button, in this case, 1 or 2.

11

store all of the objects’ IDs in an array as they are loaded. This is a tricky, but
important part of Praat scripting, but it won’t be explained in detail until later.

This is our new script (several comments have been inserted to explain the
new parts, these are lines starting with a #):

Listing 0.5: batchOpen5.praat
form Batch open

comment Open all files of...

choice Type: 1

button wav

button TextGrid

comment ...in...

sentence Directory sounds

endform

Create Strings as file list ... 'type$ 'List 'directory$ '/*.'type$ '

stringsID = selected (" Strings ")

numberOfStrings = Get number of strings

for stringCounter from 1 to numberOfStrings

select Strings 'type$ 'List

filename$ = Get string ... 'stringCounter '

Read from file ... 'directory$ '/'filename$ '

populate array with object IDs

file_ 'stringCounter '_ID = selected ()

endfor

cleanup Strings object

select stringsID

Remove

check if Strings is empty

if numberOfStrings == 0

exit No 'type$ ' files were found in directory 'directory$ '!

endif

select all files loaded by this script

select file_1_ID

for fileNumber from 2 to numberOfStrings

plus file_ 'fileNumber '_ID

endfor

12

Chapter 1

Scripting Fundamentals

Before we begin, a note concerning reference: This introduction assumes no
familiarity with programming in general or Praat scripting in particular. How-
ever, the reader is strongly encouraged to consult the Praat Manual for ref-
erence, which is available via the “Help” function within Praat, or online at
http://www.fon.hum.uva.nl/praat/manual/Intro.html.

1.1 My first program

Traditionally, the first step in learning any programming language is to cause the
words “Hello World!” to appear on the screen. We’ll do this using Praat, because
that’s what this course is about. Since Praat can be considered a scripting
language, we need two things for this example to work: the main Praat program
(called praat under Linux or praatcon.exe under Windows) and a text file
containing our instructions in a format that Praat can understand.

The text file is what we will refer to as our script, and can be created
with any text editor. Using our favorite editor, let’s create a script file called
helloWorld.praat. (The .praat part at the end, sometimes referred to as the
file extension, is not necessary and could just as well be something else, such as
.script, .psc, .txt, or whatever. It’s not important because the file is just a
text file, and Praat will check its contents for well-formedness when we tell it
to run the script. However, the .praat extension is the quasi-official standard.)

This script file should contain only the following line:

Listing 1.1: “Hello World!” in Praat
echo Hello World!

That’s it!
Before we get into explanations, let’s run the script (from the command line)

and make sure it works:� �
$1 praat helloWorld.praat
Hello World!� �

1I’ll use $ as a generic command prompt, because that’s what it usually looks like under
Linux. Under Windows, this could be C:\> or something similar.

13

http://www.fon.hum.uva.nl/praat/manual/Intro.html

Great! So what just happened? Well, we invoked the praat program and gave
it the script as an argument by typing a space followed by the script filename.
This caused Praat to open the script file, and starting from the top, carry out
the instructions, line by line.

Our script consists of only a single instruction, which works much in the same
way as what we did to run the script. There is one command, echo, followed by
an argument. The echo command takes exactly one argument, so everything
after the first space is treated as that argument (even if there is another space
before the end of the line), and prints that argument to the output, which is
just what we wanted.

To put things into perspective, other programming and scripting languages
(the distinction is irrelevant here) can be much more complicated, as the fol-
lowing examples illustrate:2

Listing 1.2: “Hello World!” in C++
#include <iostream.h>

main()

{

cout << "Hello World!" << endl;

return 0;

}

Listing 1.3: “Hello World!” in Java
import java.io.*;

class HelloWorld{

static public void main(String args []){

System.out.println("Hello World!");

}

}

Listing 1.4: “Hello World!” in Scheme
(define helloworld

(lambda ()

(display "Hello World !")

(newline)))

(helloworld)

Of course, none of this is relevant here, except to illustrate how simple by
comparison the Praat scripting language is!

1.2 Scripting elements

Apart from the echo command, there are of course many other commands that
we could write into a script file as instructions. However, each instruction must
reside on its own line, since Praat will assume everything to the end of the line
to belong to one instruction. We can, however, have spaces and/or tabs (“white-
space”) at the beginning of the line, before the instruction. This means we can
make our script code more readable by indenting lines that belong together.

If a line becomes too long, we can break it into more than one line; if we begin
each continuation line with a ..., Praat will treat them as a single instruction.

The following three (!) instructions are all well-formed:
2These examples are taken from The Hello World Collection and may not compile properly;

they are given here only for illustrative purposes.

14

http://www.roesler-ac.de/wolfram/hello.htm

echo Hello World!

echo Hello World!

echo This is output generated by a line so long that it was

... continued on a second line.

1.2.1 Comments

It is not only possible, but considered good form to explain what we are doing
in a script by providing comments. This not only helps others who might want
to understand our code, but also ourself, once we go back to a script we wrote
a few weeks ago. Trust me on this...

Comments should be on their own line, and that line should start with a
#, ;, or ! (perhaps after some whitespace). Some commands will also allow
us to place a comment after the instruction on the same line, but others will
produce unexpected results when we try this, so it’s safest to place comments on
their own lines. Essentially, everything after this comment symbol is ignored by
Praat. This also allows us to quickly disable certain lines when we’re developing
a script, in case we don’t need them at the moment, or we’re trying to find the
source of an error (“debugging”).

This line is a comment.

! So is this one.

; And this one as well.

The last line was empty , and therefore ignored.

a = 1 + 2 ; we just did math, and this is another comment.

The following does not work:

echo Hello World! ; this comment should not be printed, but will be!

1.3 Variables

Without variables, there could be (almost) no scripting.
A variable is a name by which Praat remembers the output of an instruction,

with the purpose of reusing that output at a later time. Let’s take a real-world
example:

Let’s assume that we want to run a pitch analysis, consisting of several
steps, on some male voice data, and each of these steps depends on a certain
predetermined value for pitch floor and ceiling. We could enter those floor and
ceiling values by hand in each step, taking care to use the same values each
time. While this would of course work perfectly well, let’s imagine we want to
run the same analysis on female voice data, where pitch floor and ceiling will be
different. We would have to adjust those values in every single analysis step by
hand, taking care not to forget to change any “male” values, or else our analysis
would become invalid.

It would be far easier to define the floor and ceiling values once, and then
use those values throughout the various analysis steps. This is exactly what
variables are for.

So instead of using the following pseudo-script:

male voice data

15

pitch floor is 75 Hz

pitch ceiling is 300 Hz

analysis step 1, which involves the values 75 and 300

analysis step 2, which involves the values 75 and 300

analysis step 3, which involves the values 75 and 300

analysis step 4, which involves the values 75 and 300

female voice data

pitch floor is 100 Hz

pitch ceiling is 500 Hz

analysis step 1, which involves the values 100 and 500

analysis step 2, which involves the values 100 and 500

analysis step 3, which involves the values 100 and 500

analysis step 4, which involves the values 100 and 500

We could use the following, subtly different one:
male voice data

pitch_floor = 75

pitch_ceiling = 300

analysis step 1, involving 'pitch_floor ' and 'pitch_ceiling '

analysis step 2, involving 'pitch_floor ' and 'pitch_ceiling '

analysis step 3, involving 'pitch_floor ' and 'pitch_ceiling '

analysis step 4, involving 'pitch_floor ' and 'pitch_ceiling '

female voice data

pitch_floor = 100

pitch_ceiling = 500

analysis step 1, involving 'pitch_floor ' and 'pitch_ceiling '

analysis step 2, involving 'pitch_floor ' and 'pitch_ceiling '

analysis step 3, involving 'pitch_floor ' and 'pitch_ceiling '

analysis step 4, involving 'pitch_floor ' and 'pitch_ceiling '

Note how the lines with the actual analysis instructions (which would of
course be more complex in a real script) are exactly the same for both speaker
analyses. This may seem trivial at first, but implies all the power of scripting
with variables.

Now, let’s look more closely at what the lines that are not comments do.
The instruction pitch_floor = 75 tells Praat to create a variable with the name
pitch_floor and assign to it a value that is equal to whatever is on the right
side of the =, in this case, the number 75. After this instruction has been carried
out, we can at any time refer to this number, stored as pitch_floor by using the
variable name pitch_floor. In fact, this is exactly what is done in the analysis
steps (except that here, being comments, they don’t do anything at all).

Once we get to the part where we look at the female voice data, we no
longer need the pitch parameters of the male voice, so we change the values
of the pitch_floor and pitch_ceiling variables. This is done simply by redefining
them, which causes Praat to forget what their previous values (if any) were.

Before you wonder, once they have been created (“declared” or “instanti-
ated”), variables remain available until the end of the script, even if their values
change. There is no way to delete a variable or otherwise remove it from memory
during a script’s run time, but there should not be a need to, either. Conversely,

16

all variables created by a script are deleted when the script finishes, so that
variables are only available during run time.

Now, let’s write a short script that instead of chewing through pitch analyses,
simply outputs the pitch parameters for the male and female voice data:

Listing 1.5: outputPitchParameters.praat
#male voice data

pitch_floor = 75

pitch_ceiling = 300

echo Male voice:

echo Pitch floor is 'pitch_floor ' Hz

echo Pitch ceiling is 'pitch_ceiling ' Hz

female voice data

pitch_floor = 100

pitch_ceiling = 500

echo Female voice:

echo Pitch floor is 'pitch_floor ' Hz

echo Pitch ceiling is 'pitch_ceiling ' Hz

This script actually does something when run:� �
$ praat outputPitchParameters.praat
Male voice:
Pitch floor is 75 Hz
Pitch ceiling is 300 Hz
Female voice:
Pitch floor is 100 Hz
Pitch ceiling is 500 Hz� �
1.3.1 Variable names

There are simple but important rules to follow when choosing names for our
variables, namely they must

� start with a lower-case letter;

� contain only letters (upper or lower-case), digits, and underscores;

� not contain spaces, dashes, punctuation marks, umlauts, or anything not
in the previous point.

� One exception is the leading dot, explained in Section 1.7.2.

So a, fooBar, number_1, and aEfStSgs3sWLKJW234 are all valid, legal variable names,
while Pitch, my-number, column[3], and lösung are not.

Furthermore, it is not entirely impossible to inadvertently choose a variable
name that is the same as a function name or a predefined variable.3 If this
happens, Praat will usually give us an error. Don’t worry too much about this

3A common example is the predefined variable e

17

for now, though; we will soon learn more about function names and predefined
variables, so that we can avoid the few that there are.

Finally, a word of advice on naming variables: choose names that are se-
mantically transparent and that we will not confuse with others in our scripts.
While we may have to press a few more keys to type numberOfSelectedSounds than
ns, we will certainly know what the variable stands for. Remember, cryptic code
is not prettier!

1.3.2 Variable types

There are actually two different types of variables in Praat scripts: numeric
variables and string variables. The first type is what we’ve seen already, but
has an important restriction: numeric variables can only contain numbers. So,
4, -823764, 0.03253, and 6.0225e23 (6× 1023; Avogadro’s number) are all possible
values for a numeric variable, while abc, All this belongs together, AC 78.56,
Amplitude:

Minimum: -0.87652892 Pascal

Maximum: 0.83545512 Pascal

Mean: -8.5033717e-07 Pascal

Root-mean-square: 0.36832867 Pascal , and everything else are not. They are strings.
Strings can be assigned to string variables. These work exactly like numeric

variables, but their names have a $ at the end. This means that the numeric
variable foo is not the same as the string variable foo$, and both may occur
side-by-side in the same script.

Whenever a string is to be used in a place where an (unevaluated) string
variable is expected, the string must be enclosed in "double quotes", for example
when declaring a string variable:

stringVariable$ = "the string contents"

One reason for the distinction between numeric and string variables will
become apparent later, when we learn about operators. For now, let’s leave it at
this simple explanation: numeric variables are variables we can do math with,
and string variables aren’t.

Predefined variables

Incidentally, Praat provides a number of predefined variables, which will come
in handy later on. For now, we should just have a quick look at Table 1.3.2.

Special characters in strings

To create a string containing special characters, such as tabs and line breaks,
the apropriate predefined variables should be used. A double quote within a
string must be doubled:

Listing 1.6: Double quotes in strings
quotedString$ = """ string """

echo quotedString$ = 'quotedString$ '� �
$ praat doubleQuote.praat
quotedString$ = "string"� �

18

Table 1.1: Predefined variables
Name Value
pi 3.141592653589793

e 2.718281828459045

newline$ “line break” character
tab$ “tab” character
shellDirectory$ the current working directory
preferencesDirectory$ the directory where Praat stores

certain configuration files
date$() current time and date

(format example: Mon Jun 24 17:11:21 2002)
environment$(key) value of environment variable keya

Note: date$() and environment$() are actually functions, cf. Section 1.4.
aThis is specific to the operating system. In Linux, environment variables can be listed with

the env command; in Windows, the corresponding button is found in the “System Properties”.

1.4 Operators and functions

We’ve already seen one operator, the assignment operator = that takes whatever
is to its right side and assigns it to the variable to its left. There are of course
others, but they share the syntax to use them, which is,

OPERAND1 operator OPERAND2

On the other hand, there are also functions, which for scripting purposes do
similar things as operators, but tend to involve parentheses. Functions use the
following syntax (brackets denoting optionality),

function (ARGUMENT1 [, ARGUMENT2 [, ARGUMENT3 [,...]]])

As we can see, the function takes a number of arguments (the number and in-
dividual type of the arguments is specific to the function), separated by commas
and enclosed in parentheses.

Spaces around operators, parentheses, and commas are almost always op-
tional, but increase the legibility of script code.

There are quite a number of operators and functions available in Praat, but
they are divided into those that work on numbers and numeric variables, and
those that work on strings and string variables. The former are commonly used
for mathematical operations while the latter are sometimes collectively referred
to as “string handling”.

1.4.1 Mathematics

A short selection of commonly used mathematical operators and functions, along
with some examples, follows:

The full selection of mathematics operators and functions can be found in the
Praat Manual, under “Formulas 2. Operators” and “Formulas 4. Mathematical
functions”, respectively.

Of course, all operators and functions can be nested, i.e. used as arguments
of others. Parentheses can and should be used to modify the priority as intended.
An example:

19

http://www.fon.hum.uva.nl/praat/manual/Formulas_2__Operators.html
http://www.fon.hum.uva.nl/praat/manual/Formulas_4__Mathematical_functions.html
http://www.fon.hum.uva.nl/praat/manual/Formulas_4__Mathematical_functions.html

Table 1.2: Mathematical operators and functions (selection)
Example Outcome

+ addition 1 + 2 3

- subtraction 3 - 2 1

* multiplication 2 * 3 6

/ division 6 / 3 2

^ exponentiation 2 ^ 3 8

div division, rounded down 10 div 3 3

mod modulo (remainder of div) 10 mod 3 1

abs() absolute value abs(-1) 1

sqrt() square root sqrt(9) 3

round() nearest integer round(0.5) 1

floor() next-lowest integer floor(1.9) 1

ceiling() next-highest integer ceiling(0.1) 1

sin() sine sin(pi) 0

cos() cosine cos(pi) -1

abs(5 - (1 / (cos(2 * pi) + sqrt (4))) ^ -2) ; outcome: 4

Just for fun, the above instruction is the same as
∣∣∣∣5− (

1
cos 2π+

√
4

)−2
∣∣∣∣.

In some situations (such as when working with while loops, cf. Section 1.5.2)
we will find it convenient to know that there is a shorthand to writing a = a + n

(where n is a number), namely the increment operator, which does exactly the
same thing, but is written as a += n.

Note that there is also a decrement operator, -=, as well as *= and /=, which
work analogously.

1.4.2 String handling

A string is, in effect, a list of characters, and such a list can be queried and
modified. An important concept is that of a substring, which is essentially a
part of a string, or more formally, a contiguous sublist of the list of characters
in a string. It sounds more complicated than it really is, as illustrated by these
examples:
hello$ = "Hello World !"

substring of hello$ containing the first 5 characters :

"Hello"

substring of hello$ containing the last 6 characters :

"World !"

substring of hello$ containing characters 3 through 7:

"llo W"

There are a number of handy functions in Praat for doing things with strings,
the first three of which do just what the last example implied. Functions with
a $ at the end of their name return a string, the others return a number. Note
that the number of arguments, as well as their sequence and type (string or
numeric), is important!

20

Table 1.3: String functions (selection)
Returns

left$(string$, length) first length characters of string$

right$(string$, length) last length characters of string$

mid$(string$, start, length) substring of length characters from string$,
starting with the startth character

index(string$, substring$) starting position (“index”) of first occurrence
of substring$ in string$ (0 if not found)

rindex(string$, substring$) starting position (“index”) of last occurrence
of substring$ in string$ (0 if not found)

startsWith(string$, substring$) 1 if string$ starts with substring$, 0 otherwise
endsWith(string$, substring$) 1 if string$ ends with substring$, 0 otherwise
replace$(string$, target$,

replacement$, howOften)

string$ with the first howOften instances of
target$ replaced by replacement$ (for
unlimited replacement, set howOften to 0)

length(string$) number of characters in string$

extractWord$(string$, pattern$) substring of string$ starting after the first
occurrence of pattern$ and ending before the
next space or newline$ or at string$’s end
(returns empty string if pattern$ is not found
in string$; empty string as pattern$ returns
the first word)

extractLine$(string$, pattern$) as extractWord$(), but returns substring from
pattern$ to end of line or string$

extractNumber(string$, pattern$) as extractWord$(), but returns number
immediately following pattern$ (returns
--undefined-- if no number after pattern$ or if
pattern$ not found)

Listing 1.7: String function examples
helloWorld$ = "Hello World !"

first 5 characters

hello$ = left$(helloWorld$, 5)

echo 'hello$ '

last 6 characters

world$ = right$(helloWorld$, 6)

echo 'world$ '

characters 3 through 7, i.e.

llo_W$ = mid$(helloWorld$, 3, 5)

echo 'llo_W$ '

starting position of first "l"

firstL = index(helloWorld$, "l")

echo 'firstL '

starting position of last "l"

lastL = rindex(helloWorld$, "l")

echo 'lastL '

21

does helloWorld$ start with "H"?

firstCharIsH = startsWith(helloWorld$, "H")

echo 'firstCharIsH '

does helloWorld$ end with "d"?

lastCharIsD = endsWith(helloWorld$, "d")

echo 'lastCharIsD '

replace first "Hello" with "Goodbye"

goodbyeWorld$ = replace$(helloWorld$, "Hello", "Goodbye", 1)

echo 'goodbyeWorld$ '

replace all "l"s with "w"s

hewwoWorwd$ = replace$(helloWorld$, "l", "w", 0)

echo 'hewwoWorwd$ '

length of helloWorld$

helloLength = length(helloWorld$)

echo 'helloLength '� �
$ praat simpleStringFunctions.praat
Hello
World!
llo W
3
10
1
0
Goodbye World!
Hewwo Worwd!
12� �

It is also quite simple to concatenate strings. This is accomplished using the
+ operator, which works differently with strings than numbers. Observe:

helloWorld$ = "Hello" + " " + "World !"

outcome: "Hello World !"

Similarly, the - operator also works on strings, removing a substring from
the end of a string (“truncating” the string), but only if the string indeed ends
with the substring in question:

helloWorld$ = "Hello World !"

hello$ = helloWorld$ - "World"

outcome: "Hello World !"

why? because helloWorld$ doesn 't end in "World", but in "World !"

hello$ = helloWorld$ - "World !"

outcome: "Hello "

As with mathematical functions and operators, string functions can be nested.
For instance, to get everything except the first 3 characters from a string, we
could do this:

helloWorld$ = "Hello World !"

22

from3$ = right$(helloWorld$, length(helloWorld$) - 3)

outcome: "lo World !"

which is the same as

from3$ = mid$(helloWorld$, 4, length(helloWorld$) - 3)

1.4.3 Variable evaluation

The crucial part of working with variables is the ability to use either their names
or their values. This means that in some situations, we will type the variable’s
name, but we want Praat to interpret it as if we had typed the variable’s current
value. This is called evaluating (or “substituting” or “expanding”) the variable.
In Praat, this is done by enclosing the variable’s name in single quotes (as in
'myVariable'). Figuring out when to evaluate a variable, and when to just use its
name is one of the tricky parts of writing Praat scripts.

However, a few examples should shed light on this mystery. We’ve already
used evaluation several times, in combination with the echo command. As we
saw in our very first script, the echo command simply outputs whatever follows
it on the same line.

echo This is a sentence.

output: This is a sentence.

If we have a variable called numberOfFiles and assign it the number 4, then
output this variable using echo, we have to use variable evaluation. Observe:

numberOfFiles = 4

echo numberOfFiles

output: numberOfFiles

however:

echo 'numberOfFiles '

output: 4

or , more verbosely:

echo number of files: 'numberOfFiles '

output: number of files: 4

As we’ve also seen, we can freely mix normal output text and evaluated
variables, all as the argument to the echo command.

So what happens when a variable is evaluated that has not been instantiated
yet? Observe:

echo 'noSuchVariable '

output: 'noSuchVariable '

(This may happen to you fairly often as you learn how to write Praat scripts,
and is usually caused by mis-typing variable names.)

23

As a rule of thumb, every variable in single quotes is evaluated before the
line itself is interpreted by Praat.4

Evaluating string variables works the same way, except that we use the string
variable’s name (i.e. echo 'myString$').

This raises an intriguing possibility.

Evaluating variables within strings

Since variables can be evaluated anywhere in a Praat script, we can use this to
evaluate a variable within a string ! This means that the following is possible:

a$ = "is"

b$ = "sentence"

c$ = "This 'a$' a 'b$ '."

outcome: "This is a sentence ."

by the way , this is the same as ...

c$ = "This " + a$ + " a " + b$ + "."

... but slightly more intuitive!

In fact, this feature is the basis of Praat’s mechanism for arrays (cf. Sec-
tion 1.6).

Additionally, this is also how we can “convert” a numeric variable into a
string, and vice versa:

a = 1

a$ = "'a'"

outcome: "1"

a = 'a$'

outcome: 1

Note that the conversion from string variable to number only works if the con-
tents of a$ can be interpreted as a number.

1.4.4 Comparison operators

Finally, there are a few comparison operators, which are used almost exclusively
in condition statements (cf. Section 1.5.1), which return either “true” or “false”.
This is called a truth value (also referred to as a Boolean value). Praat has a
healthy, inherently binary, notion of truth values in that “false” is always 0 and
“true” is 1 (usually), or more generally, not 0.

As usual, these operators can be combined to allow complex conditions such
as (a == 2 and not b <= 10) or c$!= "foo". You are strongly encouraged to use
parentheses to ensure proper grouping of multiple subconditions.5

4Cf. Paul Boersma’s explanation in the Praat User List.
5In contrast to several other programming/scripting languages, Praat leniently treats =

and == as equivalent in comparison expressions. However, to explicitly distinguish the com-
parison operator from the assignment operator, I will use the more widespread notation ==

in comparisons (and prefer != over <> for good measure).

24

http://uk.groups.yahoo.com/group/praat-users/message/2833

Table 1.4: Comparison operators
Returns 1 iff

x x is not 0

not x x is 0

x and y x and y are both not 0

x or y either x or y is not 0

x = y (or x == y) x and y are the same
 works for strings, too!x <> y (or x != y) x and y are different

(same as not x = y)
x < y x is smaller than y

x <= y x is smaller than or equal to y

x > y x is greater than y

x >= y x is greater than or equal to y

. . . and 0 otherwise

Note that the concepts “smaller” and “greater” are in fact applicable to
strings as well as numbers, but refer to alphabetical ordering, i.e. "a" < "b" is
true. In the same sense, upper-case letters are “smaller” than lower-case letters.6

1.5 Flow control

1.5.1 Conditions

Rather often in a script, there are instructions that should only be carried out
if certain circumstances are met, and not if they aren’t. This is what conditions
(also referred to as “jumps”) are for. Let’s look at an example:

Listing 1.8: if...endif
condition = 0

echo 'condition '

if condition

echo Condition has been met!

else

echo Condition has not been met!

endif

condition = 1

echo 'condition '

if condition

echo Condition has been met!

else

echo Condition has not been met!

endif� �
$ praat ifThenElse.praat
0
Condition has not been met!

6This is because the values that are actually compared are the values of the ASCII codes
of the letters. Look it up!

25

http://en.wikipedia.org/wiki/ASCII

1
Condition has been met!� �

Notice how in the first if...endif block, only the first instruction was carried
out, and in the second, only the second instruction. While the blocks themselves
are identical, the value of condition changed, which caused the condition given
after the if to evaluate to 0 in the first case, and 1 in the second.

In case we only want to do something if a certain condition is met, but
nothing if it isn’t, we can omit the else part.

On the other hand, if we want to differentiate between several cases if the
first condition is not met, we can use the elsif7 command, as in:

if not value

echo Value is 0

elsif value < 0

echo Value is negative

elsif value <= 10

echo Value is greater than 0 but no greater than 10

else

echo value must be greater than 10

endif

Only one of the echo commands will be carried out, depending on the value
of value. Note that if more than one condition evaluates to true, only the first
one will be applied.

1.5.2 Loops

The magic key to automating repetitive tasks are loops. Loops keep performing
instructions until a break condition (also referred to as an “exit condition” or
“terminating condition”) is met. There are three different flavors of loops in
Praat, repeat...until, while...endwhile and for...endfor loops. They all share
a dangerous pitfall: if the break condition is never, ever met, the script will
continue to run until the Praat task is ungracefully terminated by hand.8 This
is called an infinite loop, and Praat cannot help us detect one in advance. It’s
our responsibility to avoid these when using loops.

repeat loops

In a repeat...until loop (which we’ll call a repeat loop for brevity’s sake), all
instructions between the repeat and until lines are carried out repeatedly until
the break condition, supplied after the until, evaluates as true. This usually
means that we need some sort of conditional variable, whose value is checked
by the break condition.

Listing 1.9: repeat loop
counter = 10

echo Countdown:

repeat

echo 'counter '...

7Instead of elsif, we can also write elif.
8In Windows, this is done with the Task Manager ; in Linux, using e.g. the kill command.

26

counter -= 1

until counter = 0

echo Blastoff!� �
$ praat repeatUntil.praat
Countdown:
10...
9...
8...
7...
6...
5...
4...
3...
2...
1...
Blastoff!� �

Note that even if the break condition is true from the start, the repeat loop
is still performed at least once.

while loops

The while loop works similarly to the repeat loop, except that the break condition
is defined at the beginning of the loop, right after the while. This means that
if the break condition is false from the start, the while loop is not performed at
all.

Listing 1.10: while loop
sentence$ = "This is a boring example sentence ."

searchChar$ = "e"

echo The sentence ...

echo "'sentence$ '"

numberFound = 0

while index(sentence$, searchChar$)

firstPosition = index(sentence$, searchChar$)

numberFound += 1

sentence$ = extractLine$(sentence$, searchChar$)

endwhile

echo ... contains 'numberFound ' "'searchChar$ '"s.� �
$ praat whileEndwhile.praat
The sentence ...
"This is a boring example sentence ."
... contains 5 "e"s.� �

If searchChar$ is not in sentence$ at all, index() returns 0 and the entire while

loop will be skipped.

27

for loops

As we will soon come to see, the most common type of loop by far involves a
counter variable (also referred to as an “iterator”), while the break condition is
simply a value this iterator must not exceed.

This could easily be accomplished with a certain type of while loop:

Listing 1.11: for loop using while

iterator = 1

while iterator <= 5

echo 'iterator '

iterator += 1

endwhile� �
$ praat whileFor.praat
1
2
3
4
5� �

However, because it is so common, a streamlined syntax has been provided
for this type of loop which implicitly initializes and iterates the counter:

Listing 1.12: for loop
for iterator from 1 to 5

echo 'iterator '

endfor� �
$ praat forEndfor.praat
1
2
3
4
5� �

The for loop takes the counter variable, whose name is provided after the
for, sets it to the value provided after the from, performs all instructions between
the for and endfor, increases the value of the variable by 1, and repeats, until
the value becomes larger than the value provided after the to.

In fact, if we want to start from 1 (as is usually the case), we can streamline
this syntax even further by omitting the from 1, which is then implicitly assumed.
And just as with the while loop, if the break condition is true from the start
(e.g. for i from 2 to 1 or something similar), the loop won’t be executed even
once.

1.6 Arrays

Combining for loops with what we learned in Section 1.4.3, we have everything
we need for another important concept in Praat scripting: arrays.

An array is essentially a group of variables that have names with numbers
in them. These variables are usually created within a for loop, and later used

28

in another loop. The punchline, however, is that in creating and accessing the
variables, the loops’ iterators are used within the variable names!

So we might have several variables called value_1, value_2, value_3, and so on,
and while this in itself is nothing new, it would allow us to do the following:

numberOfValues = 3

sumOfValues = 0

for i to numberOfValues

sumOfValues += value_ 'i'

endfor

So what’s going on? In the first iteration of the loop, sumOfValues is increased
by the value of value_1, in the second iteration, by the value of value_2, and in
the third and final iteration, by the value of value_3.

There are two important limitations here. The first is that we need some
variable (such as numberOfValues in the example) to keep track of how many
variables like value_1 there are. We have to know this, because we need this
number in the break condition of the for loop. If we were to try and access
something like value_4, and that variable had not been previously set, we would
probably get an error.

The second limitation is not as obvious, but becomes apparent if we try to
output the respective value within the loop using e.g. echo. We have to evaluate
the variable in the argument to the echo command, but we would have to nest
one evaluated variable within another. However:

Listing 1.13: Evaluation nesting problem
value_1 = 1

value_2 = 2

value_3 = 3

for i to 3

echo 'value_ 'i''

endfor

let 's make things interesting :

value_ = 99

for i to 3

echo 'value_ 'i''

endfor� �
$ praat nestingProblem.praat
'value_1 '
'value_2 '
'value_3 '
99i''
99i''
99i''� �

As we can see, none of this worked as we hoped. The only solution is to
assign the desired variable to a “placeholder” variable, which we then output.

In fact, we can easily create and access “multidimensional” arrays by using
loops within loops. Observe:

29

Listing 1.14: A table of products
create the array

for x to 7

for y to 7

product_ 'x'_'y' = x * y

endfor

endfor

access the array to build the table

table$ = ""

for x to 7

for y to 7

this is the placeholder :

thisProduct = product_ 'x'_'y'

table$ = "'table$ ''thisProduct ''tab$ '"

endfor

table$ = table$ + newline$

endfor

output the table

echo 'table$ '� �
$ praat tableOfProducts.praat
1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49� �

In this script, we additionally see that we can store a long string containing
several lines in a single string variable, which is then output with a single echo

command.9

Note that although the variables composing an “array” cannot be addressed
as a single entity (unlike in many other programming languages), we will nev-
ertheless uphold the custom of referring to such variables as elements of an
array, although the array itself is just a handy concept and has no concrete
manifestation in the Praat scripting language itself.

1.7 Procedures

Sometimes we will come across a portion of code in a script that occurs several
times in the script. It would be desirable to only have to write this code once
and then refer to it again as needed. This is where procedures come in.

A procedure is essentially a block of several instructions that are defined and
named, and which can then be called whenever needed. A call to a procedure

9Alright, I’ll concede that we could have computed and output the respective product in
a single pass through a double loop, but I was trying to demonstrate array usage, and in the
real world, single passes will not always be possible. Just bear with me here!

30

simply executes all lines of the procedure at the point where the call is made.
Observe:

Listing 1.15: Procedures
define an array of squares

for x to 10

square_ 'x' = x ^ 2

endfor

define a procedure to output this array

procedure output_array

for x to 10

square = square_ 'x'

printline 'square '

endfor

endproc

call the procedure simply with

call output_array

No matter where in the script the procedure is defined, it can always be
called, before or after the definition, which allows us to banish all tedious pro-
cedures to the end of the main script, clearing things up considerably. This way,
we can “outsource” blocks of code that deal with one aspect of our script into
individual procedures and have a very elegant “main” script:

Listing 1.16: More procedures
begin main

call define_array

call output_array

end main

procedure define_array

for x to 10

square_ 'x' = x ^ 2

endfor

endproc

procedure output_array

for x to 10

square = square_ 'x'

printline 'square '

endfor

endproc

1.7.1 Arguments to procedures

Procedures can have arguments of their own. They are defined along with the
procedure simply by adding them to the procedure line. These arguments act as
variables in their own right, defined when the procedure is called.

When such call is made, these arguments must be passed to the procedure,
and the number and type (number or string) of the arguments must match
the procedure definition. Of course the arguments passed can also be variables,
but we should realize that they are different from the variables used within the
procedure!

31

Listing 1.17: Procedures with arguments
call define_array squares 10

call output_array squares 10

procedure define_array array_name$ array_size

for x to array_size

'array_name$ '_'x' = x ^ 2

endfor

endproc

procedure output_array array_name$ array_size

for x to array_size

square = 'array_name$ '_'x'

printline 'square '

endfor

endproc

The way string arguments are passed to a procedure may be slightly con-
fusing, especially when string variables are passed, but we should keep in mind
that string arguments in a procedure call expect strings, not string variables.
Hence:

Listing 1.18: Procedures with arguments passed from variables
name_of_array$ = "squares"

size_of_array = 10

call define_array 'name_of_array$ ' size_of_array

call output_array 'name_of_array$ ' size_of_array

procedure define_array array_name$ array_size

for x to array_size

'array_name$ '_'x' = x ^ 2

endfor

endproc

procedure output_array array_name$ array_size

for x to array_size

square = 'array_name$ '_'x'

printline 'square '

endfor

endproc

This is equivalent to:

Listing 1.19: Procedures in “plain text”
name_of_array$ = "squares"

size_of_array = 10

this mimics calling the first procedure

array_name$ = "'name_of_array$ '"

array_size = size_of_array

for x to array_size

'array_name$ '_'x' = x ^ 2

endfor

at this point , we have an "array" of 10 variables:

squares_1

squares_2

...

squares_10

this mimics calling the second procedure

32

array_name$ = "'name_of_array$ '"

array_size = size_of_array

for x to array_size

square = 'array_name$ '_'x'

printline 'square '

endfor

Quoting string arguments

So what happens if the string arguments contain spaces? Praat makes assump-
tions about spaces, which are potentially not what we had in mind. Observe:

Listing 1.20: Procedures with string arguments
procedure greet greeting$ name$

printline 'greeting$ ',

printline 'name$ '!'newline$ '

endproc

This works , but only because the first string contains no space

call greet Hello Mr. President

This no longer works

call greet Happy birthday Mr. President

Now with too many double quotes

call greet "Happy birthday" "Mr. President"

Finally , this works just as intended

call greet "Happy birthday" Mr. President

now the same with variables , which doesn 't work ...

happyBirthday$ = "Happy birthday"

mrPresident$ = "Mr. President"

call greet happyBirthday$ mrPresident$

... because they must be evaluated

call greet 'happyBirthday$ ' 'mrPresident$ '

but as before , the first , and not the second , in quotes

call greet "'happyBirthday$ '" 'mrPresident$ '� �
$ praat procedures6.praat
Hello ,
Mr. President!

Happy ,
birthday Mr. President!

Happy birthday ,
"Mr. President "!

Happy birthday ,
Mr. President!

happyBirthday$,
mrPresident$!

33

Happy ,
birthday Mr. President!

Happy birthday ,
Mr. President!� �
Numeric arguments

Numeric arguments can be numbers or numeric variables. In both cases, they
must not be quoted, otherwise they would be interpreted as strings, which would
cause an error.

However, a numeric argument may also be complex expression, a so-called
formula, containing variables, functions, and the like, so long as the formula
returns a number. If the formula contains a space (although most formulas can
be written without spaces), it must be quoted, unless it is the last argument, in
which case it must not be quoted.

Listing 1.21: Passing numeric arguments
call printSum 1 1

call printSum pi e

one = 1

two = 2

call printSum one two

call printSum length ("abc") -1

call printSum 1+1 2+2

call printSum "1 + 1" 2 + 2

procedure printSum number1 number2

sum = number1 + number2

printline 'number1 ' + 'number2 ' = 'sum '

endproc� �
$ praat numericArguments.praat
1 + 1 = 2
3.1415926535897 + 2.7182818284590 = 5.8598744820488
1 + 2 = 3
3 + -1 = 2
2 + 4 = 6
2 + 4 = 6� �

To summarize, arguments in a procedure call must be wrapped in double
quotes if they contain spaces, except for the last argument, which must not
be quoted. If non-final arguments don’t contain spaces, quoting them is not
mandatory; however, since it’s not always foreseeable whether or not a string
will contain spaces at run time, quoting non-final string arguments is generally
a good idea.

34

1.7.2 Local variables

Normally, all variables declared within a procedure (starting with the procedure-
“internal” variables in the procedure definition) are available in the script, as
soon as the procedure has been called for the first time. This works just like with
normal variables, and these normal variables are referred to as global variables.

Within procedures, however, it is possible to declare and use local variables,
which means that they can be used only within the procedure. Outside the
procedure itself, these variables are unavailable. In Praat, local variables have
names that begin with a . (dot).10

Listing 1.22: Procedures with local variables
name_of_array$ = "squares"

size_of_array = 10

call define_array 'name_of_array$ ' size_of_array

call output_array 'name_of_array$ ' size_of_array

procedure define_array .array_name$.array_size

for .x to .array_size

'.array_name$ '_'.x' = .x ^ 2

endfor

endproc

procedure output_array .array_name$.array_size

for .x to .array_size

.square = '.array_name$ '_'.x'

printline '.square '

endfor

endproc

Note that the reverse is also true: local variables declared in the “main” part
of a script (i.e. outside of procedure definitions) are not accessible from within
procedures. In fact, this entails that a local variable in the main script and a
local variable with the same name within a procedure will not overwrite each
other and could be used side-by-side, as shown here:

Listing 1.23: Mutually “invisible” local variables
.foo$ = "foo"

echo '.foo$ '

call bar

echo '.foo$ '

procedure bar

.foo$ = "bar"

echo '.foo$ '

endproc� �
$ praat procedures8.praat
foo
bar
foo� �

10This is the only exception to the rule that variable names in Praat begin with a lower-case
letter and consist only of letters, digits and underscores.

35

1.8 Arguments to scripts (part 1)

Just as procedures can receive arguments, the entire script itself can also take
arguments, which are provided from the command line exactly as detailed in
the preceding section for procedure calls. This is done with a form block.

form blocks work slightly differently from the rest of Praat script syntax.11

The form itself must be followed by a space.12 Between the form and endform lines,
there are a series of argument (a.k.a. “parameter”) declarations. Each consists
of the type of the argument (real or text, for numbers or strings, respectively),
a space and the name of variable the argument will have in the script. Since the
type is defined by the first part of the declaration, the name of a string variable
does not end in a $. Let’s have an example:

Listing 1.24: Script arguments
form

real howMany

text greeting

text name

endform

echo 'howMany ' 'greeting$'s, 'name$ '!� �
$ praat form.praat 100 "Happy birthday" Mr. President
100 Happy birthdays , Mr. President!� �

Quotes around string arguments are handled similarly, but not identically,
because the arguments are first split according to the operating system’s rules
for command line arguments, and then passed to the Praat script. This should
not create insurmountable problems, though; if in doubt, just try it out.

1.9 External scripts

Apart from using procedures, there are two other ways to re-use code in Praat
scripts: including another script and executing it.

1.9.1 include

The include command takes as its only argument the name of another script file.
This other script file is then “inserted” into the including script at run time,
just as if all lines in the included file had been typed into the including script at
the point where the include command was issued.13 Of course, it is possible to
include multiple scripts. Note that Praat will perform include commands before

11This is due to the fact that they seem to have been designed primarily as a means to
create custom dialog windows in the graphical version of Praat. We will return to this in a
later chapter.

12. . . followed by the dialog window’s title, which is ignored in command line use.
13Praat’s behavior in the regard goes as far as counting lines in the including script as if all

lines of the included script were actually present in the including script. This means that if
Praat gives an error message about something that happens in the including script after the
include command, we will have to subtract the number of lines in the included script from
the line number of the error to find the actual line number of the offending command in the
including script. This behavior can be slightly reduced by placing include commands at the
end of scripts.

36

anything else in the script, so we cannot use a variable to provide the filename
of the included script.

Global variables in included scripts will count as global variables in the
including script, so take care to check which variable names are used in scripts
before you include them, or you might inadvertently overwrite variables in the
including script. . .

The most effective way to use the include command is to use it with scripts
that contain nothing but procedures, thereby providing these procedures to
the including script without actually doing much at include time. Combining
this approach with the use of local variables makes it rather safe concerning
accidental variable overwriting.

1.9.2 execute

Another way to have one script run another is the execute command. In contrast
to the include command, this simply runs the executed script from start to finish,
then returns control to the executing script and continues with it. No variables
are shared or overwritten.

If the executed script takes any arguments (using form...endform), these must
be provided along with the execute command. Passing these arguments works
syntactically exactly as passing them from a procedure call (cf. Section 1.7.1)
or from the command line.

1.10 File operations

Praat provides a limited number of functions and commands to query, read and
write files. But first, a word about paths.

1.10.1 Paths

If a Praat script is to access any file (even another script) that is not in the same
directory as the script itself, we have to supply the path to the file, either as
an absolute or relative path. The exact format of absolute paths depend on the
operating system under which we’re running the script. Table 1.5 gives a few
examples. What these absolute paths have in common is that they are fixed; if
we move our script to another directory and run it from there, files given with
absolute paths will still be found.

Table 1.5: Examples of absolute paths
Windows "C:\Documents and Settings\John Doe\Desktop\praat"
Linux or
MacOS X

/home/jdoe/Desktop/praat or
∼jdoe/Desktop/praat

MacOS ≤9 "My Disk:Desktop:praat"

However, it is usually preferable to use relative paths. These take the script’s
directory as the base, and work from there. So if we have our script in a directory,
along with a subdirectory called "Sounds" containing some sound files (e.g.
abc.wav) which we want to access with our script, we would simply precede

37

references to these files with the name of the directory, followed by a forward
slash / (e.g. Sounds/abc.wav).

The main advantage of using relative paths is portability. We can move the
script and the relevant subdirectories to another location (directory or disk), and
everything will work just as before. Also, since relative paths in Praat scripts
always use forward slashes, scripts are even portable across different operating
systems.14

1.10.2 File Input/Output

File input and output (“I/O”) is extremely easy in Praat scripts. The only thing
we need is a string variable and the relevant I/O operator, <, >, or >>.

Reading a file

To read the entire contents of a text file into a string variable, use the < operator.

Listing 1.25: A text file
This is a text file containing several "sentences ",...

...an empty line , and some numbers , separated by tabs:

123 456.67 89000

Listing 1.26: Praat script to read a text file
foo$ < foo.txt

The following expression is now true:

foo$ == "This is a text file containing several "" sentences "" ,..."

... + "'newline$ ''newline$ '...an empty line , and some numbers , "

... + "separated by tabs:'newline$ ''tab$ '123'tab$ '456.67 'tab$ '89000"

Writing a file

To write the contents of a string variable to a text file, use the > operator instead.
Be careful; if the file already exists, its contents will be deleted first!

Appending to a file

Appending to a file uses the >> operator and works just like writing, with one
exception: if the file already exists, the contents of the string variable is added
at the end of the file.15

To append any text (not just string variables) to a file, we can use the
fileappend command. This command is followed by the filename, and everything
after that (to the end of the line) is treated as the string to be appended.
This works similarly to the echo command. If the filename is stored in a string
variable, that variable must be evaluated and enclosed in double quotes.

14Praat is able to use platform-specific path syntax, but this is strongly discouraged, since
writing a script e.g. under Windows with backslashes instead of forward slashes will destroy
the script’s portability to a non-Windows system.

15In fact, <, >, and >> behave exactly as the respective standard input/output redirection
operators in Windows/DOS and Linux (commonly referred to as STDIN and STDOUT).

38

greet$ = "Hello"

fileappend hello.txt 'greet$ ' World!� �
$ cat hello.txt16

Hello World!� �
1.10.3 Deleting files

A file can be deleted simply by using the filedelete command, followed by the
name of the doomed file. If the file does not exist, the command has no effect.
filedelete can be useful in combination with fileappend, in case we want to write
more text than just the contents of a string variable to a file, but don’t want
that file’s previous contents (if any) to survive.

1.10.4 Checking for file availability

Sometimes it is important to know whether a certain file exists. For instance,
trying to read a file that isn’t there will usually cause an error. In such cases, we
can use the fileReadable function to have our script check for the file’s existence
first. The only argument to this function is the filename, and the function returns
a boolean (i.e. 1 if the file can be read, 0 otherwise).17 See Section 1.11.1 for an
example.

1.11 Refined output

The echo command is not the only way to print text to the screen. There is also
the printline command, which is essentially equivalent as long as we are using
Praat scripts from the command line.

If we don’t want to have the automatic line break at the end of an output
command, we can use the print command. This allows us to print some text to
the screen, then do something else, and print some more text into the same line
as the last text we printed. Hence:

Listing 1.27: Printing with print

the line

printline Hello world!

creates the same output as

print Hello

print world!

print 'newline$ '

16cat is a Linux untility that can print the contents of files to the screen. The equivalent
Windows/DOS command is type.

17As the function’s name implies, fileReadable will also return 0 if the file exists, but we
don’t have permission to read it, which can occur e.g. on UNIX and modern Windows (NTFS)
filesystems.

39

1.11.1 Controlled crash with exit

If we want to abort the script for any reason, we can issue the exit command.
Any further text in the same line will be printed to the screen, in addition to
Praat’s standard error message. This allows us to terminate a script early on,
before a more serious error can occur, which can be a good thing e.g. in case
a script argument is not what we intended. It also allows us to inform the user
about the reason for the exit command.

Listing 1.28: Catching an exception with exit

filename argument received from command line

form

text filename

endform

no filename received?

if filename$ == ""

exit no input file specified!

filename reveived , but file not found?

elsif not fileReadable(filename$)

exit input file "'filename$ '" not found!

endif

read file

filetext$ < 'filename$ '

just print file contents to screen

print 'filetext$ '� �
$ praat exit.praat
Error: no input file specified!
Script "exit.praat" not completed.
Praat: command file "exit.praat" not completed.

$ praat exit.praat noFile
Error: input file "noFile" not found!
Script "exit.praat" not completed.
Praat: command file "exit.praat noFile" not completed.� �

If all we want to do is make sure the script does not continue unless a
certain condition is met, we can use the much shorter command assert. This
command is followed by a statement, and if that statement is false, Praat will
terminate the script with a standard error message. Using assert is much quicker
than checking for conditions explicitly and using exit, but the tradeoff is that
we cannot change the format of the error message, which is not necessarily
meaningful to a potential scripting-illiterate user:

Listing 1.29: Catching an exception with assert

form

text filename

endform

assert filename$ <> ""

assert fileReadable(filename$)

40

filetext$ < 'filename$ '

print 'filetext$ '� �
$ praat assert.praat
Error: Script assertion fails in line 5 (false):

filename$ <> ""
Script "assert.praat" not completed.
Praat: command file "assert.praat" not completed.

$ praat assert.praat noFile
Error: Script assertion fails in line 6 (false):

fileReadable(filename$)
Script "assert.praat" not completed.
Praat: command file "assert.praat noFile" not completed.� �
1.12 Self-executing Praat scripts

It is possible to have scripts run by themselves without explicitly calling the
praat command and passing the script as the first argument. Depending on the
operating system, the procedure to set this up can vary.

Note that this is essentially a cosmetic feature and intended only for ad-
vanced users.

1.12.1 Linux

Under Linux and similar operating systems, we need two steps to make a script
self-executing:

1. add a special line at the top of the script18 containing the path to the
praat program

2. make the script file executable by modifying its file permissions

Below is an executable version of helloWorld.praat:

Listing 1.30: “Hello World!” in Praat, executable
#!/ path/to/praat

echo Hello World!� �
$ chmod -v u+x helloExe.praat
mode of `helloExe.praat ' changed to 0700 (rwx ------)
$./ helloExe.praat
Hello World!� �

18This must indeed be the first line of the script and consist of a #!, followed by the absolute
path to the praat binary. This works exactly as with bash, perl, python, and similar scripts.

41

1.12.2 Windows

In Windows, we can make Praat scripts self-executing by configuring the file
association of “PRAAT Files” (i.e. files whose name ends with .praat, the “file-
name extension”) so that they are automatically opened with the praatcon.exe
program. The exact procedure depends on the version of Windows, as well as
several other factors too Windows-specific to be listed here, but usually involves
double-clicking a script file and taking it from there.

Note that while we should now be able to run a Praat script simply by
double-clicking it, it will open a command prompt window to run the script
and close this window again automatically (configuring Windows to keep the
window open for review can be tricky.)

However, we can now simply enter the script filename on the command line,
and Windows will automatically use praatcon.exe to run the script:� �
> helloWorld.praat
Hello World!� �

Note that Windows classifies files exclusively by filename extension, so if you
use a different extension for Praat script files (such as .psc or .script), you
will have to modify your file type settings accordingly.

1.13 System calls

The following is also relevant only to advanced console jockeys.
It is possible to have Praat make a system call to the operating system,

executing a command that would normally only be usable on the command line.
Since this depends entirely on the operating system under which the Praat script
is being executed, the possibilities are far beyond the scope of this introduction.
The command for making such system calls is system, the rest of the line being
interpreted by the operating system. In case a system call could return an error,
we can instead use the system_nocheck command to keep the Praat script from
terminating at that point.

As an afterthought, there is also a way to make Linux-type environment
variables available to a Praat script, by using the environment$() function, which
takes a single string argument, the name of the environment variable, and re-
turns its value. So under Linux, e.g. environment$("PWD") == shellDirectory$.

42

Chapter 2

Praat GUI

While we can theoretically accomplish a lot with command line use of Praat
scripts, the full set of Praat features is available only through the Graphical
User Interface (“GUI”). Praat is obviously much more than a script interpreter;
its main focus lies in phonetic analysis, and for this, we need visualization and
editing capabilities. In fact, there are hundreds of Praat commands that only
make sense when we work with object selection, which is entirely hidden and
non-interactive if we use Praat from the command line. The only way to discover
these commands (and their arguments) is to work with Praat graphically, and
even if a script is designed to be run from the command line, it is almost always
developed graphically first.

We should keep in mind, though, that calling scripts from the command line
is more efficient (i.e. faster) when processing large amounts of data or complex
computations, and so such “batch processing” scripts should be designed with
command-line use in mind.

2.1 Object Window

The graphical interface of Praat is started by executing the praat program with
no argument. Under Windows, it is actually a different program, praat.exe, as
opposed to the command line only version, praatcon.exe.

When Praat starts, we see two windows, the Object Window (“Praat ob-
jects”) and the Picture Window (“Praat picture”). For now, we will ignore the
Picture Window. In fact, we can close that window for now.

There are essentially four areas of the Object Window which demand expla-
nation:

1. the menu bar at the top of the Object Window, consisting of the Praat,
New, Read, and Write menus

2. the object list, entitled “Objects”, is where objects can be added, selected,
and removed

3. the dynamic menu to the right of the object list, containing a number
of buttons and button menus; its contents changes according to type and
number of objects selected in the object list (if none are selected, the
dynamic menu will be empty)

43

Figure 2.1: Praat Object Window in Linux/KDE, with a Sound loaded

4. the area below the object list, which has no proper name, but always
contains the buttons Rename..., Info, Copy..., Remove, and Inspect, which
can be applied to all types of objects

2.1.1 Menu bar

The entries in the menu bar are all Praat commands, and mostly static. This
means that (with the exception of the Write menu) they can be used regardless
of the contents and state of the object list. Those that cannot be used at a given
time will be visible, but disabled (“grayed out”).

2.1.2 Objects

All objects in Praat appear in the object list until they are removed or Praat is
closed. Each object entry consists of that object’s ID number, class, and name.
The class of the object can be Sound or TextGrid or something else. The name can
consist of any sequence of letters, digits, and underscores.1 It is possible, though
potentially confusing, to have more than one object with the same name, even
when the class is the same.

1Unlike scripting variables, object names can begin with an uppercase letter, digit, or
underscore. As of version 4.6.32, Praat supports unicode characters in object names, but at
the time of this writing, this should still be considered experimental.

44

For this reason, Praat uses unique ID numbers to keep track of objects. The
first object placed in the list after Praat has been started gets the ID 1, the
second, 2, and so on. If an object is removed, that object’s ID is not recycled;
Praat’s internal counter assigning IDs is never reduced.

It is fairly obvious that objects can be renamed with the Rename... button
and duplicated with the Copy... button. What is not so obvious is that the order
of objects in the list can never be modified. This entails that every object will
always have a higher ID than objects above it in the list, and a lower ID than
objects following it.

Object selection

In the Object Window, objects are selected by clicking on them with the mouse.
Any previous selection is deselected. We can also “drag” the mouse pointer over
several objects to select them all. Alternatively, holding the Shift key while
clicking an object will select that object, as well as all other objects between
that object and the current selection, while holding the Ctrl key and clicking an
object will add only the clicked object to the current selection. Holding these
keys can of course be combined with dragging the mouse pointer.

All currently selected objects are collectively referred to as the current se-
lection.

Removing objects from the object list is done with the Remove button, which
removes all currently selected objects.

2.1.3 Dynamic menu

The contents of the dynamic menu depends entirely on the current selection.
Selecting a single object will show all available commands for that class of ob-
ject, but selecting multiple objects will usually decrease the number of available
commands, in many cases down to none (depending on the objects’ classes).
Sometimes, however, certain commands will become available only if a specific
combination of objects is selected. In Section ??, we will see how this speci-
fication works when we learn how to manipulate the dynamic menu and add
custom buttons. If no object is selected, the dynamic menu will also be empty.

2.2 Script Editor

By choosing the command New Praat script from the Praat menu, we can open
a fresh Script Editor window. This is where scripts are developed and run in
the graphical version of Praat.

The Script Editor is a simple text editor, lacking many of the fancy features
present in full-fledged editors but containing a few features specific to Praat.

We can write a new script, save it, or load a previously saved script from a
file (using the appropriate command from the File menu). The Where am I? and
Go to line... commands in the Search menu return the number of the line the
cursor is on, or send the cursor to the specified line, respectively.

45

2.2.1 Running scripts

To have Praat execute the script currently in the Script Editor, select the Run

command from the Run menu. Additionally, we can also select only a portion
of the script and use Run selection command to have Praat execute only the
selected lines of the script, ignoring all others.2

2.2.2 Command history

A unique feature of the Script Editor is its access to Praat’s internal command
history. Praat records every click on an object, button or menu entry, and they
can all be retrieved with the Script Editor’s Paste history command, found in the
Edit menu. Note that the entire command history will be inserted at the current
cursor location and usually contains many more commands than we need, many
of them selection commands. We can, however, use the Clear history at any time
to erase all recorded commands and begin afresh.

The history mechanism can be quite useful and instructive to scripting be-
ginners, because it outputs everything as a well-formed script which, if run,
does exactly what the user did up to the point of the Paste history command.
The drawback is that the power of such scripts is very limited. The history’s
contents is simply a batch of commands, one after the other, and makes no use
whatsoever of variables, loops, or more advanced techniques. Therefore, a script
“written” exclusively with the history mechanism will seldom enhance produc-
tivity compared to doing everything manually. On the other hand, if in doubt
of the correct syntax for a command with many different arguments, the easiest
solution is to use the command once and then note the command history’s last
entry.

2.3 Output

Since we can no longer receive output on the terminal (“standard out”) in the
Praat GUI, there are other analogous strategies, and even some new ones, to
output information.

2.3.1 Info Window

A window that is initially not visible but that will appear when needed is the
Info Window (“Praat: Info”). It looks just like another text editor window, and
you can even type into it and delete text and so forth, but this window is where
Praat directs almost all of its output. Whenever a command is used that returns
output, that output will appear in the Info Window. Note that every time this
happens, the previous contents of the Info Window will be deleted.

The contents of the Info Window can also be cleared by hand (usind the
Clear command from the File menu), or saved as a text file, or copied, etc. The
Info Window can also be closed; it will reappear as required.

In scripts, the Info Window can be cleared with the clearinfo command.
The Info Window is also where the output of echo, printline, and print will be

2Note that any variables declared before the selection start will not be available, so this
approach is of limited use.

46

displayed in the Info Window as well. This is also where the difference between
echo and the two print commands is finally explained; the former will clear the
Info Window before writing to it; the latter two will only append to it. This
means that

echo

is equivalent to

clearinfo

printline

or

clearinfo

print 'newline$ '

Beware of accidentally overwriting your script’s output with multiple echo

commands; this can become the cause of a lengthy and frustrating bug hunt!
Conversely, if you use only print commands, you may end up not seeing your
script’s output as it becomes appended below the visible edge of the Info Win-
dow. We can avoid this with a single clearinfo at the beginning of the script.

The contents of the Info Window can also be appended to a text file with
the fappendinfo command, which works similarly to the fileappend command (cf.
Section 1.10.2).

2.3.2 Error messages

Not all output is written to the Info Window. The other way Praat can give
us feedback is through messages. These appear as small pop-up windows and
usually give us some sort of warning or error message. This is how Praat tells
us about errors in a script, for instance. If we use the exit command (cf. Sec-
tion 1.11.1) in a script, it will also generate such a message window.

Figure 2.2: Error message about faulty
scripting command

Figure 2.3: Error message about faulty
Praat command

2.3.3 Other forms of output

Another way to give feedback to the user during a script is to use the pause

command, which works similarly to exit, but simply displays our text, along
with two buttons, “Continue” and “Stop”. As expected, the former will let the
script continue, the latter will abort. This raises interesting possibilities in script
usability design but should not be overused. Note that this command is ignored
in command-line use.

47

Some commands in Praat are expected to take relatively long to complete.
For instance, creating a Pitch object from a Sound will take longer, the more
samples must be processed. In such cases, Praat will show a Progress Window
which allows some estimate of how long the command will take to complete.
There is also an Interrupt button in the Progress Window, which allows us to
abort the process (which is useful in case we e.g. want to modify some command
parameters to decrease processing complexity).

Figure 2.4: Progress Window showing To Pitch... process

2.4 Objects in scripts

A Praat script can select objects and run available commands (“buttons”) just
as easily as if we used the mouse to do everything by hand, but very much
faster! In fact, most scripts will perform such “actions” in the blink of an eye.

2.4.1 Object selection commands

To select an object with a script, we use the select command, which is equivalent
to clicking on the object. Of course we have to supply an argument to the
command specifying which object should be selected. This can either be the
object’s class and name (separated by a space), or its ID. So if we have a Sound
object named My_Recording in the object list, we can select it in a script with
the commands select Sound My_Recording. Of course, nothing prohibits another
Sound with the same name from existing in the object list, and in cases of
ambiguity, the last object will always be selected.

For this reason, it is generally preferable to use the select command with
object IDs instead of names, in which case the object class is omitted. So if
the Sound named My_Recording that we want to select has the ID 44 (being the
44th object placed in the object list since program start), we can have the script
select it simply with the command select 44.

To select more than one object at once, we must add to an existing selection,
using the command plus, which otherwise works just like select. If the object
happens to be already selected, plus does nothing. To remove an object from the
selection, use the minus command. Again, if the specified object is not selected
anyway, minus does nothing. Note that we can use minus to deselect the last
object in the selection, thereby clearing the selection. Likewise, we can use plus

even if no object is currently selected.

48

To simply select all objects in the object list at once, use the command
select all.

2.4.2 Querying selected objects

So how do we get the name or ID of a selected object for use in a script? We
use one of two functions, selected$() or selected(). Notice how the first returns
a string and the second, a number. These return values will be the selected
object’s class and name, or ID, respectively.

There’s more to these functions, however. If the selection contains more than
one object, we can pass either, or both, of two arguments. The first is the class of
the object we’re interested in (passed to the function as a string), in which case
selected$() will return only the object’s name, and the other is a number. This
number n returns the name or ID of the nth object in the selection, starting from
the top.3 If we want to count from the bottom, we simply specify a negative n
argument.

To get the number of selected objects, use the function numberOfSelected(),
and to get only the number of selected objects of a certain class (presumably
from a selection also containing objects of other classes), provide this function
with the desired class as a string argument.

Time for a few examples (which assume we have a selection corresponding
to Figure 2.5):

Figure 2.5: Praat Object Window with various objects selected

3In fact, selected() is simply shorthand for selected(1).

49

name$ = selected$ ()

outcome: "Sound foo"

id = selected ()

outcome: 6

secondObject$ = selected$ (2)

outcome : "Spectrum foo"

secondID = selected (2)

outcome: 7

secondSoundName$ = selected$ (" Sound", 2)

outcome: "foo"

secondSoundID = selected ("Sound", 2)

outcome: 15

lastIntervalTierName$ = selected$ (" IntervalTier", -1)

outcome: "bar"

thirdToLastObject$ = selected$ (-3)

outcome: "TextGrid foo"

firstIntervalTierID = selected (" IntervalTier ")

outcome: 10

secondToLastIntervalTierID = selected (" IntervalTier", -1)

outcome: 11

seventhObjectClass$ = extractWord$(selected$ (7), "")

outcome: " TableOfReal "

numberOfSelectedObjects = numberOfSelected ()

outcome: 8

numberOfSelectedSounds = numberOfSelected (" Sound ")

outcome: 2

Applying this to what we already know about arrays, we could easily store
the IDs of all selected object in an array, to later recall the initial state of the
selection:

Listing 2.1: Store IDs of selected objects in array
obj_num = numberOfSelected ()

for o to obj_num

obj_ 'o'ID = selected(o)

endfor

2.5 Praat command syntax

Notice how all menu commands and buttons in the various Praat windows
begin with a capital letter or digit. This is the exact opposite of the scripting
commands we have seen so far, which all begin with a lower-case letter. In
general, the scripting commands are only available in scripts while the Praat
commands beginning with a capital letter (or digit) can also be clicked on by
hand when using Praat graphically and interactively.

50

2.5.1 Praat commands in scripts

We can use all of Praat’s commands in scripts. However, we have to make sure
that the command is available (i.e. visible and not grayed out) at the time
when it is used in the script. Otherwise we will get an error message about the
command’s unavailability (cf. Section 2.3.2).

When we use such a command, we have to take special care to type it on
its own line in the script, exactly as it appears on the button or in the menu.
That means we have to pay extra special attention to capitalization, spaces, and
other characters (such as parentheses, numbers, etc.). Otherwise, we’ll get the
error.

Arguments to Praat commands

There are many Praat commands that pop up dialog windows, asking for ar-
guments of certain types. These commands invariably end in ... (three dots),
which is Praat’s indication that arguments must be supplied. When such a com-
mand is called in a script, the arguments must be given after the command, in
the same line, separated by single spaces. This works similarly to arguments to
procedures (cf. Section 1.7.1), with a few differences regarding double quotes
and variable evaluation:

� Numeric arguments to Praat commands are formulas and may, but don’t
have to be, enclosed in double quotes, with some specialties concerning
numeric variables:

1. If a numeric argument contains a numeric variable, that variable may
or may not be evaluated, however

2. If a numeric argument consists only of a numeric variable (and no
spaces), and the variable is not evaluated, then the argument may
not be quoted (otherwise it would be interpreted as a string!)

� A string arguments to Praat commands may, but doesn’t have to be,
enclosed in double quotes, except if it contains a space, in which case it
must be quoted.

� Any variables supplied as string arguments (or parts of string arguments)
to Praat commands must always be evaluated.

� The last argument must never be quoted.

Some Praat commands may require other types of arguments, namely check-
boxes, radio buttons, or pulldown menus:

A checkbox is essentially a boolean, either on or off, true or false, and hence,
a checkbox argument can be supplied as either 1 or 0.4 However, we can also
use yes and no instead, respectively.

Radio buttons and pulldown menus are essentially identical, except in ap-
pearance. Their arguments are strings and must be passed exactly as the re-
spective buttons or menu entries are presented in the dialog.

4Note that the distinction is not just between 0 and not 0 as with scripting booleans, but
between 0 and 1; any other numeric value is not allowed here.

51

Figure 2.6: Example of other argument types

Assuming there were a Praat command called Other types of arguments...

and Figure 2.6 displayed its dialog and the accompanying arguments, the fol-
lowing example illustrates its syntax in a script:

this works

Other types of arguments ... 1 0 "Choice A" Choice B

this works as well

Other types of arguments ... yes no "Choice A" Choice B

this would NOT work

Other types of arguments ... 1 0 "Choice A" "Choice B"

because there is no pulldown menu item "" Choice B""

and neither would this

Other types of arguments ... 1 0 Choice A Choice B

because the radio button would receive the string argument

"Choice" and the pulldown menu "A Choice B"

If you have trouble figuring out the correct scripting syntax for a command
with complex arguments, remember the Command History (cf. Section 2.2.2)!

Redirecting output into variables

Every Praat command that outputs some form of information to the Info Win-
dow can have its output redirected and assigned to a variable. This variable will
be a string variable, except if the output begins with a number. In this case, it
can instead be assigned to a numeric variable, but everything after the number
(usually a unit of measurement) will be truncated.

duration$ = Get total duration

outcome: "5 seconds"

duration = Get total duration

outcome: 5

Trying to assign non-numeric output to a numeric variable will result in an
error.

Redirecting command output into variables is both essential to scripting and
the only way to make Praat display the output of several commands at once.
Otherwise all e.g Query commands will behave like echo, erasing any previous
Info Window contents.

52

Suppressing warnings and progress dialogs

Sometimes Praat will display a warning or error message, or a progress window.
Assuming we know what we are doing, we may find it undesirable to have
this kind of output during execution of a script. If a command might output
a warning message, we can prefix the command with the nowarn directive. To
suppress an error message, use nocheck. And to suppress a progress window, use
noprogress.

hypothetical samples with high amplitude will be clipped when saved

nowarn Write to WAV file ... mySoundWhichMightBeClipped.wav

no progress window regardless of how long this will take

noprogress To Pitch ... 0 75 600

remove even if there is no object selected

nocheck Remove

nocheck can cause serious problems if used incorrectly. Do not use it unless
you can be sure of what will happen, and that the error is something non-critical.
Even then, there might be a better solution.

2.6 Editor scripting

The only Praat commands easily available to a script are those in the Object
and Picture Windows. This means that initially, all commands in the various
Editor Windows are unavailable. However, there is a way for a script to “enter”
an Editor Window and use all commands available there. This is accomplished
via an editor block.

Listing 2.2: Enter and use Sound Editor window
make sure we have exactly one Sound selected

assert numberOfSelected () == 1

assert extractWord$(selected$ () ,"") == "Sound"

remember the Sound 's name ...

soundName$ = selected$ (" Sound ")

open the Editor Window

Edit

enter the Editor Window named for the Sound

editor Sound 'soundName$ '

#

do things in Editor Window

#

close Editor Window

Close

endeditor

The editor statement takes two arguments, the class and name of the object
being edited (just like named select, etc.). These can be easily seen in the title
bar of the Editor Window itself, but for a script to use these dynamically, we
have to query the object as described in Section 2.4.2.

53

Note that while in the editor block, only the commands in the Editor Window
are available for scripting; Praat commands in the Object and Picture Windows
are not available again until after the endeditor statement.5 Also note that editor
scripting is not possible when running Praat scripts from the command line.

2.6.1 Editor scripts

If we want to write a script that uses the editor windows, we can also create and
run a script from within the editor. Such a script, referred to as an editor script,
is already in “editor mode” from the start and does not require the editor and
endeditor statements. It can be created with the New editor script command in
the Editor window’s File menu, which opens up a Script Editor window tied to
that specific Editor window (as visible in the Script Editor’s title bar).

2.6.2 Sound Editors

Commands in Editor Windows that display a Sound’s waveform (oscillogram)
and (optionally) its spectrogram, intensity, pitch, formants, and glottal pulses
can be difficult to use in scripts. This is due to the fact that only the visible
analysis components are available to the commands, while the commands usually
depend on the current position of the cursor. This means that three things play
a role here:

Visibility of analysis

To ensure that a certain analysis is visible, we can use the Show analyses...

command from the View menu with appropriate arguments.

Figure 2.7: Show analyses... dialog

Additionally, the “Longest analysis (s)” argument determines the maximum
length of the analyzed part of the Sound. If the current window shows more than
this, none of the analyses will be visible, and commands such as Formant listing

will fail with an error message.
5Scripting commands, such as printline, select, and others beginning with a lower-case

letter, are available even in “editor mode”.

54

Zoom

To make sure we view an appropriate part (“window”) of the Sound (and that
the current view is not longer than the “Longest analysis (s)” (cf. previous
Section), we can use the Zoom... command from the View menu, or commands
like Zoom to selection (cf. next Section). Zoom in is probably not specific enough.

Cursor position and selections

We can also move the cursor to a specified position with the Move cursor to...

command from the Select menu, or we can specify a selection with the Select...

command. There are several relevant commands in the Select menu that are use-
ful in this respect. What is important is that we can control the cursor and selec-
tion, which determines the output of other commands such as View spectral slice

or Get pitch.
It is important to realize that almost all analyses and extraction commands of

an Editor Window are also available as similar commands in the Object Window,
usually in Query or Modify submenus in the dynamic menu. For scripting, it
is actually easier and more precise to use the Object window’s commands and
avoid using the Editor Windows. Such scripts are also more robust and run
faster!

2.6.3 Querying the Editors

The “state” of an Editor Window, i.e. the size of the visible window, the cursor
position/selection, as well as many configuration details, such as which analyses
are visible, can be retrieved with the Editor info command. If the string it returns
is parsed accordingly, checking specific relevant settings in a script is very easy.

For example, the following editor script measures the pitch in a SoundEditor,
making sure that no error occurs if the pitch contour is not visible:

Listing 2.3: Query editor and draw pitch
get editor info

editorInfo$ = Editor info

make sure pitch is shown

showPitch$ = extractWord$(editorInfo$, "Pitch show: ")

if showPitch$ == "no"

Show pitch

endif

measure pitch

pitch = Get pitch

get selection times

selectionStart = extractNumber(editorInfo$, "Selection start: ")

selectionEnd = extractNumber(editorInfo$, "Selection end: ")

output depending on whether or not mean was computed:

if selectionStart == selectionEnd

echo Pitch at cursor ('selectionStart '):'newline$ ''pitch:5' Hz

else

echo Mean pitch in interval ('selectionStart ' - 'selectionEnd '):

...'newline$ ''pitch:5' Hz

endif

55

restore previous setting

if showPitch$ == "no"

Show pitch

endif

2.7 Picture Window

The Picture Window is one of the powerful, but commonly underestimated
features of Praat. It allows us to produce graphics and illustrations (usually, but
not necessarily, based on Objects), which can be helpful for data analysis, and
additionally be exported as vector-based image files for insertion into research
papers and reports.

2.7.1 Picture Window basics

The Picture Window is essentially an (initially) empty canvas measuring 12×12
inches (16 yellow squares, each 3 inches on a side, as indicated by the rulers at
the canvas edges). By default, only the left half and top three quarters of this
canvas are visible.

In addition, there is a pink selection rectangle, which can be set by dragging
the mouse. Note that it is not possible to modify this selection by dragging its
edges, so the selection behaves much like a selection in a Sound Editor, albeit
in two dimensions.

The selection actually consists of two rectangles, the outer viewport and
the inner viewport. It is the area between these two viewports that is filled in
pink.6 The inner viewport is where most of the graphics should be created,
while the outer viewport serves as an outer guideline for axis labels, titles and
things of the sort. The behavior of the mouse with regards to viewport cre-
ation, as well as the obligatory precise commands Select inner viewport... and
Select outer viewport... are found in the Select menu.

Before we continue, let’s have an example of how the viewport determines
what will be drawn in the Picture Window. With the default viewport (6×4
inches), the script

Listing 2.4: Create 1kHz sine and draw its spectrum
Create Sound from formula ... sine_1kHz Mono 0 1 22050

... 1/2 * sin (2 * pi * 1000 * x)

To Spectrum ... no

Draw ... 0 0 0 0 yes

results in the Picture Window contents shown in Figure 2.10:
The Draw... command available for Spectrum objects has a number of parame-

ters (cf. Figure 2.8) that determine which portion of the spectrum will be drawn,
as well as the scale. The “Garnish” option adds the frame along the inner view-
port edge (the “inner box”), as well as the axis labels. Notice how these labels
are drawn into the area between the inner and outer viewports.

There are many Drawing and Painting commands available for various object
classes, and most of them should be sufficient for normal use. Remember that

6The difference in size between the inner and outer viewports depends on the currently
selected font size, see below.

56

Figure 2.8: Spectrum: Draw... dialog

Figure 2.9: Empty Picture Window Figure 2.10: Result of Listing 2.4

the non-interactivity of the Picture Window is by design; these graphics are
not meant to rival the editors, but to allow exporting analysis data in a format
perfect for visual analysis and professional publishing.

Importing external graphics

Before you get your hopes up, there is no way to get any type of external graphic
or image into the Picture Window. The only ways to insert anything there is to
use Drawing commands (either by hand or in a script, obviously).

However, it is possible to write the complete current contents of the Picture
Window to a file using the Praat Picture file format (prapic is the default exten-
sion, though we can use what we want). With the Write to praat picture file...

command, we can create a binary file, which can subsequently be imported into
the Picture Window using the Read from praat picture file... command. Any
contents in the Picture window at the time of import remains beneath. This can
also be used to exchange graphics between Praat on two different platforms.7

7So if we really needed to save an EMF from Praat under Linux, we could use this feature
to create a prapic file, then read it back into Praat under Windows and write it to an EMF
file...

57

Don’t use screenshots!

If you ever want to export anything visual from Praat to be included in a
research paper or other publication, do not use screenshots of an editor window
or anything of the sort. Doing so will create a pixel-based image with a resolution
no higher than that of the screen from which it was captured. Print resolution
will almost always be much higher, so the image will become blocky or blurry,
depending on how it was processed, but will never look good.

Also, pixel-based images tend to consume rather large amounts of mem-
ory (each pixel is stored individually), unless compression is used. One of the
most common types of image compression is JPEG, which, when configured
improperly, will introduce artifacts along high-contrast edges. Text processors
such as Microsoft Word tend to make the worst of such images when it comes
to printing.

Additionally, window decorations (borders, etc.) distract from the analysis
you’re trying to show with your image, and if you want your readers to know
that you used Praat, you should state it in the text. Demonstrating that you
were running Praat under e.g. Windows XP with the “Energy Blue” theme is
not desirable, and the names of files or objects you analyzed are details that
usually irrelevant.8

The solution to these issues is to export the contents of the Picture Window
to a file that recreates it using vector graphics. One such format is Encapsulated
PostScript (EPS), used with the Write to EPS file... and its variants, which
can be easily converted to any other vector-based format using appropriate
software. Another is Microsoft’s Enhanced Metafile (EMF) format, which is
well suited for insertion into Microsoft Office documents. However, the required
commands, Write to Windows metafile... or Copy to clipboard, are available only
in the Windows version of Praat.

Vector images can be scaled arbitrarily without deteriorating edges or intro-
ducing artifacts, because their components are essentially continuous functions,
which are sampled and redisplayed optimally whenever they are rendered.9 Since
these components in most cases take up very little memory, most vector images
are also very efficiently stored.

In fact, the contents of the Picture Window displayed in Figure 2.10 could
be exported as an EPS file and inserted into a LATEX document such as this one
directly:

\begin{figure}

\includegraphics{spectrum1kHz}

\end{figure}

Code like that was used to insert Figure 2.11.

2.7.2 Custom drawing commands

Besides exporting graphics to files for insertion into documents, we can of course
draw arbitrary graphics into the Picture Window. There are a number of com-
mands at our disposal, and scripting makes them efficient to use.

8I realize that I’m ranting against everything I’ve done myself in this document, but I’m
trying to focus on the interaction with Praat itself, not the data!

9Incidentally, this rendering is conceptually quite similar to the digitization of audio signals!

58

Figure 2.11: Result of Listing 2.4, but exported as EPS

Frequency (Hz)
0 11025

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB
/

H
z)

40

60

80

Frequency (Hz)
0 11025

S
ou

nd
 p

re
ss

ur
e

le
ve

l (
dB
/

H
z)

40

60

80

Preliminaries

Similar to the Info Window, drawing commands will not clear the Picture Win-
dow, so to start with a blank canvas, we can issue the Erase all command in the
Edit menu.

We can try out various drawing commands by hand, and whenever we make
a mistake, we can use the Undo command (also in the Edit menu), which can
come in handy.

Most commands that draw lines or shapes are modified by the current set-
tings in the Pen menu. These include the line type (solid, dotted or dashed) and
width, controlled with the commands Solid line, Dotted line, Dashed line, and
Line width..., respectively.

Likewise, Text printed to the Picture Window can be controlled with respect
to font size (Font size...) and family : Times, Helvetica, New Century Schoolbook,
Palatino, and Courier, all in the Font menu. Several common font sizes can also
be specified directly, with the commands 10, 12, 14, 18, and 24 (which may look
strange in a script, on a line all by themselves, but are nevertheless valid Praat
commands).

Furthermore, lines, shapes, and text can be colored with the following palette:

Axes and scale

While the rulers along the edges of the Picture Window aid in selecting the
viewport’s proportions, they have nothing to do with the actual coordinates
used to draw objects in the Picture Window. The coordinate system is defined
using the command Axes... (found both in the Margins and World menus).
This can be arbitrary, and redefined as desired; in fact, the left margin does not
necessarily have to be smaller than the right margin, and likewise for top and
bottom.

The Axes... command takes four numeric arguments, the left, right, bottom,
and top values for the coordinate system enclosed by the inner viewport. This
means that after clicking OK in the dialog shown in cf. Figure 2.12, the lower
left-hand corner of the inner viewport is the point of origin of a coordinate
system spanning to the upper right-hand corner of the inner viewport, which
has the position (1, 1).

59

Table 2.1: Color commands and their colors
Command Color (Linux) Color (Windows)
Black

White

Red

Green

Blue

Yellow

Cyan

Magenta

Maroon

Lime

Navy

Teal

Purple

Olive

Silver

Grey

Figure 2.12: Axes... dialog

This can easily be illustrated by executing the following commands, which
results in Figure 2.13:10

Marks left every ... 1 0.1 yes yes yes

Marks bottom every ... 1 0.1 yes yes yes

Draw inner box

Now, a few simple drawing commands could be to paint a blue circle with a
diameter of 0.2 right into the center of the viewport, then print the text “Earth”
in 18pt Courier in the lower right-hand corner and draw an arrow from the text
to the circle:

Paint circle ... Blue 0.5 0.5 0.1

Font size ... 18

Courier

Text ... 0.25 Centre 0.25 Half Earth

Draw arrow ... 0.3 0.3 0.4 0.4

This enriches the Picture Window to look like this:
10It would be tedious to explain every drawing command’s arguments from here on, so

please refer to the Praat program to see what the arguments mean.

60

Figure 2.13: Coordinate system from (0, 0) to (1, 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.14: A few things drawn in

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Earth

We could just as well select the viewport to have a different aspect ratio and
redefine the axes, which results in Figure 2.15:

Select outer viewport ... 0 6 0 6

Axes ... -1 1 -1 1

Marks bottom every ... 1 0.1 yes yes yes

Marks left every ... 1 0.1 yes yes yes

Draw inner box

Paint circle ... Blue 0.5 0.5 0.1

Font size ... 18

Courier

Text ... 0.25 Centre 0.25 Half Earth

Draw arrow ... 0.3 0.3 0.4 0.4

The point of being able to define and redefine the axes at will is that various
datasets can be drawn without having to first scale the values to some fixed
coordinate system.

Note that even though the axes are defined with reference to the inner view-
port, things can still be drawn outside of the inner viewport, but tend to look
messy. However, the bounding box will be set to the outer viewport when saving
to an EPS or EMF file, which means that most programs will clip everything
outside of the outer viewport when rendering the resulting file. Even then, the
canvas size will restrict what can be drawn. While it is possible to select the

61

Figure 2.15: Same as Figure 2.14, but with a different scale

-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.100.10.20.30.40.50.60.70.80.91
-1

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Earth

viewport off-canvas, those portions will be lost on export.
So now we know everything we need to put the Picture Window to good

use!

2.7.3 Data analysis with the Picture Window

Where Praat’s graphical analysis commands don’t offer what we want, we can
easily script our own.

As an example, we will have Praat draw a histogram with the duration of
each interval on the first tier (“Word”) of festintro.TextGrid (cf. Section ??).

Listing 2.5: Duration histogram of festintro.TextGrid
open TextGrid file (modify as appropriate)

Read from file ... festintro.TextGrid

read interval durations into array

numIntervals = Get number of intervals ... 1

for i to numIntervals

start = Get starting point ... 1 i

end = Get end point ... 1 i

interval_ 'i'_Duration = end - start

endfor

Remove

for the vertical dimension , we need to know the maximal duration

maxDuration = 0

for i to numIntervals

if interval_ 'i'_Duration > maxDuration

maxDuration = interval_ 'i'_Duration

endif

endfor

Axes ... 0 numIntervals 0 maxDuration

for i to numIntervals

x_left = i - 1

62

x_right = i

y_bottom = 0

y_top = interval_ 'i'_Duration

Paint rectangle ... Red x_left x_right y_bottom y_top

to make it look nice , draw an outlined rectangle over that

Draw rectangle ... x_left x_right y_bottom y_top

endfor

garnish

Draw line ... 0 0 0 maxDuration

Marks left every ... 1 0.1 yes yes no

Text left ... yes Duration (sec)

Text bottom ... no Intervals

This produces the following Picture Window contents:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
(s

ec
)

Intervals

63

	A Short Preview
	Automating Praat
	The Script Editor
	Batch open script
	Repeating commands
	for loop
	Strings file list
	Simple dialog windows
	Good scripting practices

	Scripting Fundamentals
	My first program
	Scripting elements
	Comments

	Variables
	Variable names
	Variable types

	Operators and functions
	Mathematics
	String handling
	Variable evaluation
	Comparison operators

	Flow control
	Conditions
	Loops

	Arrays
	Procedures
	Arguments to procedures
	Local variables

	Arguments to scripts (part 1)
	External scripts
	include
	execute

	File operations
	Paths
	File Input/Output
	Deleting files
	Checking for file availability

	Refined output
	Controlled crash with exit

	Self-executing Praat scripts
	Linux
	Windows

	System calls

	Praat GUI
	Object Window
	Menu bar
	Objects
	Dynamic menu

	Script Editor
	Running scripts
	Command history

	Output
	Info Window
	Error messages
	Other forms of output

	Objects in scripts
	Object selection commands
	Querying selected objects

	Praat command syntax
	Praat commands in scripts

	Editor scripting
	Editor scripts
	Sound Editors
	Querying the Editors

	Picture Window
	Picture Window basics
	Custom drawing commands
	Data analysis with the Picture Window

