
Automatic Speech Data Processing with Praat1

Lecture Notes

Ingmar Steiner
steiner@coli.uni-sb.de

Fall Semester 2006/2007

1www.praat.org

mailto:steiner@coli.uni-sb.de
http://www.praat.org/

Contents

0 A Short Preview 9
0.1 Automating Praat . 9
0.2 The Script Editor . 9
0.3 Batch open script . 10

0.3.1 Repeating commands . 10
0.3.2 for loop . 11
0.3.3 Strings file list . 11
0.3.4 Simple dialog windows . 12
0.3.5 Good scripting practices 13

1 Scripting Fundamentals 15
1.1 My first program . 15
1.2 Scripting elements . 16

1.2.1 Comments . 17
1.3 Variables . 17

1.3.1 Variable names . 19
1.3.2 Variable types . 19

1.4 Operators and functions . 21
1.4.1 Mathematics . 21
1.4.2 String handling . 22
1.4.3 Variable evaluation . 24
1.4.4 Comparison operators . 26

1.5 Flow control . 27
1.5.1 Conditions . 27
1.5.2 Loops . 28

1.6 Arrays . 30
1.7 Procedures . 32

1.7.1 Arguments to procedures 33
1.7.2 Local variables . 35

1.8 Arguments to scripts (part 1) . 36
1.9 External scripts . 37

1.9.1 include . 37
1.9.2 execute . 38

1.10 File operations . 38
1.10.1 Paths . 38
1.10.2 File I/O . 39
1.10.3 Deleting files . 40
1.10.4 Checking file availability 40

1

1.11 Refined output . 40
1.11.1 Controlled crash with exit 40

1.12 Self-executing Praat scripts . 42
1.12.1 Linux . 42
1.12.2 Windows . 42

1.13 System calls . 43

2 Praat GUI 44
2.1 Object Window . 44

2.1.1 Menu bar . 45
2.1.2 Objects . 45
2.1.3 Dynamic menu . 46

2.2 Script Editor . 46
2.2.1 Running scripts . 46
2.2.2 Command history . 47

2.3 Output . 47
2.3.1 Info Window . 47
2.3.2 Error messages . 48
2.3.3 Other forms of output . 48

2.4 Objects in scripts . 49
2.4.1 Object selection commands 49
2.4.2 Querying selected objects 50

2.5 Praat command syntax . 52
2.5.1 Praat commands in scripts 52

2.6 Editor scripting . 54
2.6.1 Sound Editors . 55

2.7 Picture Window . 56
2.7.1 Picture Window basics . 56
2.7.2 Custom drawing commands 58
2.7.3 Data analysis with the Picture Window 62

3 Scripting Techniques 64
3.1 TextGrid processing . 64
3.2 Batch processing . 70

3.2.1 Single directory processing 71
3.2.2 Subdirectory processing 72
3.2.3 Recursive subdirectory processing 74

4 Sound Editing 76
4.1 Editing with the Sound Editor 76

4.1.1 Sound clipboard . 76
4.1.2 Other editing commands 77

4.2 Editing with the Object Window 77
4.2.1 Extracting parts of Sounds 77
4.2.2 Concatenating Sounds . 78
4.2.3 Examples . 78

4.3 Duration manipulation . 83
4.3.1 PSOLA . 83
4.3.2 The Manipulation object 84
4.3.3 Selective interval equalization 85

2

4.3.4 Selective interval equalization without Manipulation object 88
4.4 Pitch manipulation . 89

4.4.1 Pitch manipulation with the Manipulation object 90
4.5 Formant manipulation . 91

4.5.1 Selective formant manipulation 91
4.6 Low-level sound manipulation . 95

4.6.1 Direct Sound access . 95
4.6.2 Formulas . 95
4.6.3 Examples . 96
4.6.4 Creating Sounds from scratch 98

3

List of Figures

0.1 The Praat Object Window in Linux/KDE, with a Sound loaded 10
0.2 The Script Editor window . 10
0.3 Dialog window of batchOpen4.praat 13

2.1 Praat Object Window . 45
2.2 Error message about faulty scripting command 48
2.3 Error message about faulty Praat command 49
2.4 Progress Window showing To Pitch... process 49
2.5 Praat Object Window with various objects selected 51
2.6 Example of other argument types 53
2.7 Show analyses... dialog . 55
2.8 Draw... dialog . 57
2.9 Empty Picture Window . 57
2.10 Result of Listing 2.3 . 57
2.11 Axes... dialog . 60
2.12 Coordinate system from (0, 0) to (1, 1) 61
2.13 A few things drawn in . 61
2.14 Same as Figure 2.13, but with a different scale 62

3.1 Festival Intro . 65
3.2 Pitch analysis script output . 69

4.1 Sound 123’s waveform . 78
4.2 Sound 123’s intensity contour . 78
4.3 To TextGrid (Silences)... dialog 79
4.4 Sound and TextGrid 123 . 79
4.5 Sound and TextGrid 123 after zeroing and reversing 82
4.6 Manipulation Editor window . 84
4.7 Duration tier used for interval equalization 85
4.8 Sound and TextGrid 123 before interval equalization 87
4.9 Sound and TextGrid 123 after interval equalization 87
4.10 Change gender... dialog . 90
4.11 Effect of quadratic interpolation on a pitch contour 91
4.12 Sound and TextGrid 123 with two vowels marked 94
4.13 Sound and TextGrid 123 with formants switched 94
4.14 Silence . 99
4.15 White noise . 99
4.16 Square waveform (5 periods) . 101
4.17 Sawtooth waveform (5 periods) 101

4

4.18 Triangle waveform (5 periods) . 102
4.19 Pulse train waveform (5 periods) 102

5

List of Tables

1.1 Predefined variables . 20
1.2 Mathematical operators and functions (selection) 21
1.3 String functions (selection) . 23
1.4 Comparison operators . 26
1.5 Examples of absolute paths . 38

2.1 Color commands and their colors 60

3.1 TableOfReal of festintro.TextGrid (excerpt) 68
3.2 Standard commands vs. direct access (TableOfReal) 68

4.1 Standard commands vs. direct access (Sound) 95
4.2 Predefined variables in a Sound formula 96

6

Listings

0.1 batchOpen1.praat . 10
0.2 batchOpen2.praat . 11
0.3 batchOpen3.praat . 11
0.4 batchOpen4.praat . 12
0.5 batchOpen5.praat . 14
1.1 helloworld.praat . 15
1.2 helloWorld.cpp . 16
1.3 helloWorld.java . 16
1.4 helloWorld.scm . 16
1.5 outputPitchParameters.praat 18
1.6 doubleQuote.praat . 20
1.7 simpleStringFunctions.praat 22
1.8 ifThenElse.praat . 27
1.9 repeatUntil.praat . 28
1.10 whileEndwhile.praat . 29
1.11 whileFor.praat . 29
1.12 forEndfor.praat . 30
1.13 nestingProblem.praat . 31
1.14 tableOfProducts.praat . 31
1.15 procedures.praat . 32
1.16 procedures2.praat . 33
1.17 procedures3.praat . 33
1.18 procedures4.praat . 33
1.19 procedures5.praat . 34
1.20 procedures6.praat . 34
1.21 procedures7.praat . 36
1.22 procedures8.praat . 36
1.23 form.praat . 37
1.24 foo.txt . 39
1.25 readFoo.praat . 39
1.26 exit.praat . 40
1.27 assert.praat . 41
1.28 helloWorldExe.praat . 42
2.1 arrayOfIDs.praat . 51
2.2 editor.praat . 54
2.3 draw1kHzSpectrum.praat . 56
2.4 durationBarGraph.praat . 62
3.1 textGridAnalysis1.praat . 65
3.2 textGridAnalysis2.praat . 66

7

3.3 textGridAnalysis3.praat . 67
3.4 textGridAnalysis4.praat . 69
3.5 readTextFileArray.praat . 70
3.6 readTextFileStrings.praat . 70
3.7 listFiles.praat . 71
3.8 readAllSounds.praat . 71
3.9 readAllSoundsArray.praat . 72
3.10 readAllSoundsDeep.praat . 72
3.11 listAllFiles.praat . 73
3.12 createStringsAsFileList.praat 73
3.13 listAllDirsRecursive.praat 74
4.1 editingSoundEditor.praat . 79
4.2 editingObjectWindow1.praat 80
4.3 editingObjectWindow2.praat 82
4.4 123Isochronized.praat . 85
4.5 equalizeDurationsEditor.praat 86
4.6 equalizeDurations.praat . 88
4.7 123IsochronizedAlternative.praat 88
4.8 formantSwitch.praat . 92
4.9 multiply.praat . 96
4.10 echo.praat . 96
4.11 mixSimple.praat . 97
4.12 mix.praat . 97
4.13 smooth3.praat . 98
4.14 smooth5.praat . 98
4.15 smooth.praat . 98
4.16 silence.praat . 99
4.17 whitenoise.praat . 99
4.18 sine.praat . 100
4.19 square.praat . 100
4.20 sawtooth.praat . 101
4.21 triangle.praat . 102
4.22 pulsetrain.praat . 102

8

Chapter 0

A Short Preview

This chapter will showcase a short test run in Praat, which demonstrates a few of
the things yet to come by explaining a simple script and what it does. It requires
nothing from the reader except an open mind, and a willingness to postpone
full comprehension until later chapters, where everything will be explained from
the ground up.

0.1 Automating Praat

We start Praat by executing the praat binary (or praat.exe under Windows),
which brings up the Praat Object Window, as well as the Picture Window. Both
are, for now, empty, and since we don’t need the Picture Window yet, we can
simply close it (it will open again as required).

To load a wav file, we use the command Read from file... from the Read
menu, which opens the usual file selection dialog window. Once we select a file,
that file is loaded into the object list (unless of course the file is of a type that
Praat can’t recognize, in which case we get an error message instead). For now,
let’s assume I want to load the file aufnahme 1.wav.

0.2 The Script Editor

Let’s do the same thing again, by running a script.
Select the command New Praat script... from the Praat menu to open a fresh

Script Editor Window. The Script Editor is nothing but a simple text editor,
which we will use to develop our scripts. There is a history mechanism in Praat
that keeps track of all commands issued and objects selected, which is accessible
via the Paste history command in the Edit menu of the Script Editor. Using this
command, we see that the two lines correspond exactly to what we just did, i.e.
open a wav file and open the Script Editor. In fact, the commands now in the
script are precisely what the commands in the menu of the Object Window
are called, all the way to the ... at the end of the file opening command!
This means that the Read from file... command takes an argument, namely the
absolute path of the file it opened.

We can run the script with the Run command from the Run menu, and voilà!
it loads the Sound file again and opens another Script Editor (which we close

9

Figure 0.1: The Praat Object Window
in Linux/KDE, with a Sound loaded

Figure 0.2: The Script Editor window

again, since we already have one).
Let’s start a new script by using the New command from the File menu of the

Script Editor (selecting “Discard & New” when prompted). For reasons that will
be explained later, let’s save this script as testrun.praat (using the Save as...

command from the File menu), which will allow us to use relative paths.

0.3 Batch open script

Checking the sounds directory, we have four wav files that we can load in this
fashion. So let’s open them all at once (as one “batch”), because having to click
on Read from file... and selected one file multiple times is just plain annoying.

0.3.1 Repeating commands

We could write a script like this:

Listing 0.1: batchOpen1.praat
Read from file ... sounds/aufnahme_1.wav

Read from file ... sounds/aufnahme_2.wav

Read from file ... sounds/aufnahme_3.wav

Read from file ... sounds/aufnahme_4.wav

10

0.3.2 for loop

But that’s not really elegant, because we’re doing things repeatedly that differ
only in a single number. So instead, we could do this:

Listing 0.2: batchOpen2.praat
for number from 1 to 4

Read from file ... sounds/aufnahme_ 'number '.wav
endfor

This involves a for loop, which takes a counter variable called number, sets it
to the value given after the from (here, 1), and does everything until the endfor

line, at which point it adds 1 to the value of number and checks whether number is
less than or equal to the number we supplied after the to (here, 4). If yes, then
it repeats everything between the for and endfor lines (increasing the value of
number again), if not, the loop is finished (and the rest of the script is processed).

This means that the Read from file... command is actually run four times.
As the argument to the command, we’ve used the variable number again, and
by enclosing it in ’single quotes’, we ensured that its value (first 1, then 2, and
so on), rather than its name ("number") is used, so that the argument to the
Read from file... command (the filename) actually changes every time we go
through the loop.

0.3.3 Strings file list

What if we have different names for the files? What if we want to open all wav
files in a directory, regardless of their names?

Praat has a type of object called Strings, which is essentially a list of strings,
each string being a list of characters (letters, numbers, etc.). There is a command
called Create Strings from file list..., which looks at the contents of a directory
and returns all files matching a given pattern as the strings of a Strings object.
Once we have a Strings object, we can use commands like Get number of strings

and Get string... to print information about the object (and its contents) to the
Info Window.

Let’s write a script like this:

Listing 0.3: batchOpen3.praat
Create Strings as file list ... wavList sounds /*. wav

numberOfStrings = Get number of strings

for stringCounter from 1 to numberOfStrings

select Strings wavList

filename$ = Get string ... 'stringCounter '
Read from file ... sounds/'filename$ '

endfor

First, we create a Strings object called wavList (we could just as well call
it something else, though), which contains all filenames in the sounds direc-
tory ending in .wav. Since we can’t be sure how many there will be and have
to tell the for loop how many times we want it to go around, we use the
Get number of strings command from the Query menu of the Strings object’s
dynamic menu (to the right of the object list). The output of this query com-
mand is redirected into another variable, which we call numerOfStrings (again,
this could be anything, but we want to use names that make sense).

11

Then comes the loop. Inside the loop, we’ll skip over the first line for now, and
look at the Get string... command (again, from the Query menu). This one takes
an argument (remember? that’s what the ... means), namely the index of the
string we want to know. An argument of 1 returns the first string, 2, the second,
and, 'numberOfStrings', the last one (in this script, anyway). Since we want a
different string each time the loop goes through, we use 'stringCounter' as the
argument (because stringCounter is our loop’s counter variable). But again, we
redirect this query command’s output (the stringCounterth string, i.e. filename)
into a variable, which we call, for the sake of transparency, filename$. The reason
there is a $ at the end of this variable’s name is that it is a string variable, not
a numeric variable, which is the type of output of the Get string... command.
And finally, we use that string variable in the Read from file... command as
before.

One pitfall we’ve avoided is that once the first wav file is loaded, the selection
in the object list changes so that only that Sound object is selected. However, the
next time the script goes through the loop, the Get string... command will cause
an error, because that command only works when a Strings object is selected.
This error can be avoided if we explicitly select the Strings object containing our
file list in the loop, before we use the Get string... command. This is done with
the select command, which takes either an object’s numeric ID or, as here, its
class and name. In this case, we know the class (Strings), and the name as well
(wavList), because we just assigned it. Usually however, using the ID number is
preferable.

0.3.4 Simple dialog windows

What if we want to use this script for a different directory and open other files
there? Wouldn’t it be nice to have a way for Praat to ask which directory it
should look inside and open all files of a specific type out of?

Let’s go through the following script:

Listing 0.4: batchOpen4.praat
form Batch open ...

comment Open all files of type ...

choice Type: 1

button wav

button TextGrid

comment ...in directory:

sentence Directory sounds/

endform

Create Strings as file list ... 'type$ 'List 'directory$ '*.'type$ '
numberOfStrings = Get number of strings

for stringCounter from 1 to numberOfStrings

select Strings 'type$ 'List
filename$ = Get string ... 'stringCounter '
Read from file ... 'directory$ ''filename$ '

endfor

The first part of the script consists of something that looks like a form loop,
but it actually defines a dialog window that Praat will display when the script
is run, which prompts the user for certain arguments which will be used during
the second part of the script.

See if you can figure out what the lines between the form and endform do:

12

Figure 0.3: Dialog window of batchOpen4.praat

The choice and sentence lines are the actual point of this form, since they
provide variables whose values are filled in by the user. So once the user clicks the
“OK” button in the dialog window, the script continues with two new variables,
type$ and directory$1, which contain either "wav" or "TextGrid", and "sounds/" (or
whatever the user entered into the text field), respectively. The details of the
form loop will be explained later.

The second part of the script is basically the same as the script in the
previous section, except that references to a “hard-coded” directory sounds/ have
been replaced with 'directory$', which is whatever the user entered in the dialog
window, and similarly for references to wav as the file type.

0.3.5 Good scripting practices

It’s generally advisable to make a script as robust as possible, with portability
and scalability in mind. This means that we should add a few things to that
last script.

For instance, it is quite possible that the user will accidentally input a direc-
tory in the dialog window that does not exist or is not readable. In this case, the
script will simply terminate with an error generated by Praat directly, which we
couldn’t do any better.

On the other hand, if the directory exists (and a Strings object is successfully
created), but contains no files of the selected type, the Strings will be empty, and
no files will be loaded. It would be nice for the user to receive some information
about this, so we’ll add a condition with if...endif and cause an error window
of our own to pop up, using exit.

Another potential problem is that the user might not put a trailing slash at
the end of the directory name, which would cause the script to try and create
a Strings from files matching the pattern someOtherDirectory*.wav, which would
not look into the directory at all and, again, create an empty Strings object.2

So, to make sure there is exactly one slash where we need it, we add another
condition involving the string function right$(), which returns a substring of a

1Actually, three new variables: the selection of Type is additionally stored in the numeric
variable type, which contains the number of the selected button, in this case, 1 or 2.

2We could of course have added a slash ourselves, as in Create Strings from file

list... 'type$'List 'directory$'/*.'type$', but that would cause the reverse problem
if the user were to enter "someOtherDirectory/" in the dialog window.

13

given length from a string. If the last character of directory$ is not a slash, we
simply add one through string concatenation.

And finally, after the script is finished, we no longer need the Strings object,
so we simply remove it. However, to be really sure we get the right object (in
case there happens to be another object of the same class with the same name in
the object list), we’ll use the Strings object’s numeric ID, which we get with the
selected() function, select it (with select or plus), and use the Remove command,
which is actually just a button in the Praat Object Window, below the object
list.

Just to be explicit, we’ll also finish the script by selecting all of the objects it
loaded, so that the user knows immediately what happened (after all, the script
will tend to run supraliminally fast!). For this, we’ll store all of the objects’ IDs
in an array as they are loaded. This is a tricky, but important part of Praat
scripting, but it won’t be explained in detail until later.

This is our new script (several comments have been inserted to explain the
new parts, these are lines starting with a #):

Listing 0.5: batchOpen5.praat
form Batch open ...

comment Open all files of type ...

choice Type: 1

button wav

button TextGrid

comment ...in directory:

sentence Directory sounds/

endform

add trailing slash to directory$, if there isn 't one already

if right$(directory$, 1) <> "/"

directory$ = directory$ + "/"

endif

Create Strings as file list ... 'type$ 'List 'directory$ '*.'type$ '
stringsID = selected (" Strings ")

numberOfStrings = Get number of strings

for stringCounter from 1 to numberOfStrings

select Strings 'type$ 'List
filename$ = Get string ... 'stringCounter '
Read from file ... 'directory$ ''filename$ '
populate array with object IDs

file_ 'stringCounter '_ID = selected ()

endfor

cleanup Strings object

select stringsID

Remove

check if Strings is empty

if numberOfStrings = 0

exit No 'type$ ' files were found in directory 'directory$ '!
endif

select all files loaded by this script

select file_1_ID

for fileNumber from 2 to numberOfStrings

plus file_ 'fileNumber '_ID
endfor

14

Chapter 1

Scripting Fundamentals

Before we begin, a note concerning reference: This introduction assumes no
familiarity with programming in general or Praat scripting in particular. How-
ever, the reader is strongly encouraged to consult the Praat Manual for ref-
erence, which is available via the “Help” function within Praat, or online at
http://www.fon.hum.uva.nl/praat/manual/Intro.html.

1.1 My first program

Traditionally, the first step in learning any programming language is to cause
the words “Hello World!” to appear on the screen. We’ll do this using Praat, be-
cause that’s what this course is about. Since Praat can be considered a scripting
language, we need two things for this example to work: the main Praat program
(called praat under Linux or praatcon under Windows) and a text file contain-
ing our instructions in a format that Praat can understand.

The text file is what we will refer to as our script, and can be created
with any text editor. Using our favorite editor, let’s create a script file called
helloWorld.praat. (The .praat part at the end, sometimes referred to as the
file extension, is not necessary and could just as well be something else, such as
.script, .psc, .txt, or whatever. It’s not important because the file is just a
text file, and Praat will check its contents for well-formedness when we tell it
to run the script.)

This script file should contain only the following line:

Listing 1.1: “Hello World!” in Praat
echo Hello World!

That’s it!
Before we get into explanations, let’s run the script (from the command line)

and make sure it works:� �
$ praat helloWorld.praat
Hello World!� �

Great! So what just happened? Well, we invoked the praat program and gave
it the script as an argument by typing a space followed by the script filename.

15

http://www.fon.hum.uva.nl/praat/manual/Intro.html

This caused Praat to open the script file, and starting from the top, carry out
the instructions, line by line.

Our script consists of only a single instruction, which works much in the same
way as what we did to run the script. There is one command, echo, followed by
an argument. The echo command takes exactly one argument, so everything
after the first space is treated as that argument (even if there is another space
before the end of the line), and prints that argument to the output, which is
just what we wanted.

To put things into perspective, other programming and scripting languages
(the distinction is irrelevant here) can be much more complicated, as the fol-
lowing examples illustrate:

Listing 1.2: “Hello World!” in C++
#include <iostream.h>

main()

{

cout << "Hello World!" << endl;

return 0;

}

Listing 1.3: “Hello World!” in Java
import java.io.*;

class HelloWorld{

static public void main(String args []){

System.out.println("Hello World!");

}

}

Listing 1.4: “Hello World!” in Scheme
(define helloworld

(lambda ()

(display "Hello World !")

(newline)))

(helloworld)

Of course, none of this is relevant here, except to illustrate how simple by
comparison the Praat scripting language is!

1.2 Scripting elements

Apart from the echo command, there are of course many other commands that
we could write into a script file as instructions. However, each instruction must
reside on its own line, since Praat will assume everything to the end of the line to
belong to one instruction. We can, however, have spaces and/or tabs (“whites-
pace”) at the beginning of the line, before the instruction. This means we can
make our script code more readable by indenting lines that belong together.

If a line becomes too long, we can break it into more than one line, if we
begin each continuation line with a ..., and Praat will treat them as a single
instruction.

The following three (!) instructions are all well-formed:
echo Hello World!

echo Hello World!

echo This is output generated by a line so long that it was

... continued on a second line.

16

1.2.1 Comments

It is not only possible, but also considered good form to explain what we are
doing in a script by providing comments. This not only helps others who might
want to understand our code, but also ourself, once we go back to a script we
wrote a few weeks ago. Trust me on this...

Comments should be on their own line, and that line should start with a #, ;,
or !. Some commands will also allow us to place a comment after the instruction
on the same line, but others will cause problems when we try this, so it’s safest
to place comments on their own lines. Essentially, everything after this comment
symbol is ignored by Praat. This also allows us to quickly disable certain lines
when we’re developing a script, in case we don’t need them at the moment, or
we’re trying to find the source of an error (“debugging”).

This line is a comment.

! So is this one.; And this one as well.

The last line was empty , and therefore ignored.

a = 1 + 2 ; we just did math, and this is another comment.

The following does not work:

echo Hello World! ; this comment should not be printed, but will be!

1.3 Variables

Without variables, there could be no scripting.
A variable is a name by which Praat remembers the output of an instruction,

with the purpose of reusing that output at a later time. Let’s take a real-world
example:

Let’s assume that we want to run a pitch analysis, consisting of several
steps, on some male voice data, and each of these steps depends on a certain
predetermined value for pitch floor and ceiling. We could enter those floor and
ceiling values by hand in each step, taking care to use the same values each
time. While this would of course work perfectly well, let’s imagine we want to
run the same analysis on female voice data, where pitch floor and ceiling will be
different. We would have to adjust those values in every single analysis step by
hand, taking care not to forget to change any “male” values, or else our analysis
would become invalid.

It would be far easier to define the floor and ceiling values once, and then
use those values throughout the various analysis steps. This is exactly what
variables are for.

So instead of using the following pseudo-script:

male voice data

pitch floor is 75 Hz

pitch ceiling is 300 Hz

analysis step 1, which involves the values 75 and 600

analysis step 2, which involves the values 75 and 600

analysis step 3, which involves the values 75 and 600

analysis step 4, which involves the values 75 and 600

female voice data

17

pitch floor is 100 Hz

pitch ceiling is 500 Hz

analysis step 1, which involves the values 100 and 500

analysis step 2, which involves the values 100 and 500

analysis step 3, which involves the values 100 and 500

analysis step 4, which involves the values 100 and 500

We could use the following, subtly different one:
male voice data

pitch_floor = 75

pitch_ceiling = 300

analysis step 1, involving 'pitch_floor ' and 'pitch_ceiling '
analysis step 2, involving 'pitch_floor ' and 'pitch_ceiling '
analysis step 3, involving 'pitch_floor ' and 'pitch_ceiling '
analysis step 4, involving 'pitch_floor ' and 'pitch_ceiling '

female voice data

pitch_floor = 100

pitch_ceiling = 500

analysis step 1, involving 'pitch_floor ' and 'pitch_ceiling '
analysis step 2, involving 'pitch_floor ' and 'pitch_ceiling '
analysis step 3, involving 'pitch_floor ' and 'pitch_ceiling '
analysis step 4, involving 'pitch_floor ' and 'pitch_ceiling '

Note how the lines with the actual analysis instructions (which would of
course be more complex in a real script) are exactly the same for both two
speaker analyses. This may seem trivial at first, but implies all the power of
scripting with variables.

Now, let’s look more closely at what the lines that are not comments do.
The instruction pitch_floor = 75 tells Praat to create a variable with the name
pitch_floor and assign to it a value that is equal to whatever is on the right side
of the =, in this case, the number 75. After this instruction has been carried out,
we can at any time refer to this number remembered as pitch_floor by using the
variable name pitch_floor. In fact, this is exactly what is done in the analysis
steps (except that, being comments, they don’t do anything at all).

Once we get to the part where we look at the female voice data, we no
longer need the pitch parameters of the male voice, so we change the values
of the pitch_floor and pitch_ceiling variables. This is done simply by redefining
them, which causes Praat to forget what their previous values (if any) were.

Before you wonder, once they have been created (“declared” or “instanti-
ated”), variables remain available until the end of the script, even if their values
change. There is no way to delete a variable or otherwise remove it from memory,
but there should not be a need to, either.

Now, let’s write a short script that instead of chewing through pitch analyses,
simply outputs the pitch parameters for the male and female voice data:

Listing 1.5: outputPitchParameters.praat
#male voice data

pitch_floor = 75

pitch_ceiling = 300

18

echo Male voice:

echo Pitch floor is 'pitch_floor ' Hz

echo Pitch ceiling is 'pitch_ceiling ' Hz

female voice data

pitch_floor = 100

pitch_ceiling = 500

echo Female voice:

echo Pitch floor is 'pitch_floor ' Hz

echo Pitch ceiling is 'pitch_ceiling ' Hz

This script actually does something when run:� �
$ praat outputPitchParameters.praat
Male voice:
Pitch floor is 75 Hz
Pitch ceiling is 300 Hz
Female voice:
Pitch floor is 100 Hz
Pitch ceiling is 500 Hz� �
1.3.1 Variable names

There are simple but important rules to follow when choosing names for our
variables, namely they must

� start with a lower-case letter

� contain only letters (upper or lower-case), digits, and underscores

� not contain spaces, dashes, punctuation marks, umlauts, or anything not
in the previous point

So a, fooBar, number_1, and aEfStSgs3sWLKJW234 are all valid, legal variable names,
while Pitch, my-number, column[3], and lösung are not.

Furthermore, it is not entirely impossible to inadvertently choose a variable
name that is the same as a function name or a predefined variable. If this
happens, Praat will give us an error, at which point we may want to consider
the possibility that a variable name may have caused this. Don’t worry too much
about this for now, though; we will soon learn more about function names and
predefined variables, so that we can avoid the few that there are.

Finally, a word of advice on naming variables: choose names that are se-
mantically transparent and that we will not confuse with others in our scripts.
While we may have to press a few more keys to type numberOfSelectedSounds than
ns, we will certainly know what the variable stands for. Remember, cryptic code
is not prettier!

1.3.2 Variable types

There are actually two different types of variables in Praat scripts: numeric
variables and string variables. The first type is what we’ve seen already, but

19

has an important restriction: numeric variables can only contain numbers. So,
4, -823764, 0.03253, and 6.0225e23 (6× 1023; Avogadro’s number) are all possible
values for a numeric variable, while abc, All this belongs together, AC 78.56,
Amplitude:

Minimum: -0.87652892 Pascal

Maximum: 0.83545512 Pascal

Mean: -8.5033717e-07 Pascal

Root-mean-square: 0.36832867 Pascal , and everything else are not. They are strings.
Strings can be assigned to string variables. These work exactly like numeric

variables, but their names have a $ at the end. This means that the numeric
variable foo is not the same as the string variable foo$, and both may occur in
the same script.

Whenever a string is to be used in a place where an (unevaluated) string
variable is expected, the string must be enclosed in double quotes "", for example
when declaring a string variable:

stringVariable$ = "the string contents"

One reason for the distinction between numeric and string variables will
become apparent later, when we learn about operators. For now, let’s leave it at
this simple explanation: numeric variables are variables we can do math with,
and string variables aren’t.

Predefined variables

Incidentally, Praat provides a number of predefined variables, which will come
in handy later on. For now, we should just have a quick look.

Table 1.1: Predefined variables
Name Value
pi 3.141592653589793

e 2.718281828459045

newline$ “line break” character
tab$ “tab” character
shellDirectory$ the current working directory
date$() current time and date

(format example: Mon Jun 24 17:11:21 2002)
environment$(key) value of environment variable keya

aThis is specific to the operating system. In Linux, environment variables can be listed with
the env command; in Windows, the corresponding button is found in the “System Properties”.

Note: date$() and environment$() are actually functions, cf. Section 1.4.

Special characters in strings

To create a string containing special characters, such as tabs and line breaks,
the apropriate predefined variables should be used. A double quote within a
string must be doubled:

Listing 1.6: Double quotes in strings
quotedString$ = """ string """

echo quotedString$ = 'quotedString$ '

20

� �
$ praat doubleQuote.praat
quotedString$ = "string"� �
1.4 Operators and functions

We’ve already seen one operator, the assignment operator = that takes whatever
is to its right side and assigns it to the variable to its left. There are of course
others, but they share the syntax to use them, which is,

OPERAND1 operator OPERAND2

On the other hand, there are also functions, which for scripting purposes do
similar things as operators, but tend to involve parentheses. Functions use the
following syntax (brackets denoting optionality),

function (ARGUMENT1 [, ARGUMENT2 [, ARGUMENT3 [,...]]])

As we can see, the function takes a number of arguments (the number and in-
dividual type of the arguments is specific to the function), separated by commas
and enclosed in parentheses.

Spaces around operators, parentheses, and commas are almost always op-
tional, but increase the legibility of script code.

There are quite a number of operators and functions available in Praat, but
they are divided into those that work on numbers and numeric variables, and
those that work on strings and string variables. The former are commonly used
for mathematical operations while the latter are sometimes collectively referred
to as “string handling”.

1.4.1 Mathematics

A short selection of commonly used mathematical operators and functions, along
with some examples, follows:

Table 1.2: Mathematical operators and functions (selection)
Example Outcome

+ addition 1 + 2 3

- subtraction 3 - 2 1

* multiplication 2 * 3 6

/ division 6 / 3 2

^ exponentiation 2 ^ 3 8

div division, rounded down 10 div 3 3

mod modulo (remainder of div) 10 mod 3 1

abs() absolute value abs(-1) 1

sqrt() square root sqrt(9) 3

round() nearest integer round(0.5) 1

floor() next-lowest integer floor(1.9) 1

ceiling() next-highest integer ceiling(0.1) 1

sin() sine sin(pi) 0

cos() cosine cos(pi) -1

21

The full selection of mathematics operators and functions can be found in the
Praat Manual, under “Formulas 2. Operators” and “Formulas 4. Mathematical
functions”, respectively.

Of course, all operators and functions can be nested, i.e. used as arguments
of others. Parentheses can and should be used to modify the priority as intended.
An example:

abs(5 - (1 / (cos(2 * pi) + sqrt (4))) ^ -2) ; outcome: 4

Just for fun, the above instruction is the same as
∣∣∣∣5− (

1
cos 2π+

√
4

)−2
∣∣∣∣.

In some situations (such as when working with while loops, cf. Section 1.5.2)
we will find it convenient to know that there is a shorthand to writing a = a + n

(where n is a number), namely the increment operator, which does exactly the
same thing, but is written as a += n.

Note that there is also a decrement operator, -=, as well as *= and /=, which
work analogously.

1.4.2 String handling

A string is, in effect, a list of characters, and this sequence can be queried and
modified. An important concept is that of a substring, which is essentially a
part of a string, or more formally, a contiguous sublist of the list of characters
in a string. It sounds more complicated than it really is, as illustrated by these
examples:

hello$ = "Hello World !"

substring of hello$ containing the first 5 characters :

"Hello"

substring of hello$ containing the last 6 characters :

"World !"

substring of hello$ containing characters 3 through 7:

"llo W"

There are a number of handy functions in Praat for doing things with strings,
the first three of which do just what the last example implied. Functions with
a $ at the end of their name return a string, the others return a number. Note
that the number of arguments, as well as their sequence and type (string or
numeric), is important!

Listing 1.7: String function examples
helloWorld$ = "Hello World !"

first 5 characters

hello$ = left$(helloWorld$, 5)

echo 'hello$ '

last 6 characters

world$ = right$(helloWorld$, 6)

echo 'world$ '

characters 3 through 7, i.e.

llo_W$ = mid$(helloWorld$, 3, 5)

echo 'llo_W$ '

22

Table 1.3: String functions (selection)
Returns

left$(string$, length) first length characters of string$

right$(string$, length) last length characters of string$

mid$(string$, start, length) substring of length characters from string$,
starting with the startth character

index(string$, substring$) starting position (“index”) of first occurrence
of substring$ in string$ (0 if not found)

rindex(string$, substring$) starting position (“index”) of last occurrence
of substring$ in string$ (0 if not found)

startsWith(string$, substring$) 1 if string$ starts with substring$, 0 otherwise
endsWith(string$, substring$) 1 if string$ ends with substring$, 0 otherwise
replace$(string$, target$,

replacement$, howOften)

string$ with the first howOften instances of
target$ replaced by replacement$ (for
unlimited replacement, set howOften to 0)

length(string$) number of characters in string$

extractWord$(string$, pattern$) substring of string$ starting after the first
occurrence of pattern$ and ending before the
next space or newline$ or at string$’s end
(returns empty string if pattern$ is not found
in string$; empty string as pattern$ returns
the first word)

extractLine$(string$, pattern$) as extractWord$(), but returns substring from
pattern$ to end of line or string$

extractNumber(string$, pattern$) as extractWord$(), but returns number
immediately following pattern$ (returns
--undefined-- if no number after pattern$ or if
pattern$ not found)

starting position of first "l"

firstL = index(helloWorld$, "l")

echo 'firstL '

starting position of last "l"

lastL = rindex(helloWorld$, "l")

echo 'lastL '

does helloWorld$ start with "H"?

firstCharIsH = startsWith(helloWorld$, "H")

echo 'firstCharIsH '

does helloWorld$ end with "d"?

lastCharIsD = endsWith(helloWorld$, "d")

echo 'lastCharIsD '

replace first "Hello" with "Goodbye"

goodbyeWorld$ = replace$(helloWorld$, "Hello", "Goodbye", 1)

echo 'goodbyeWorld$ '

replace all "l"s with "w"s

hewwoWorwd$ = replace$(helloWorld$, "l", "w", 0)

23

echo 'hewwoWorwd$ '

length of helloWorld$
helloLength = length(helloWorld$)
echo 'helloLength '� �
$ praat simpleStringFunctions.praat
Hello
World!
llo W
3
10
1
0
Goodbye World!
Hewwo Worwd!
12� �

It is also quite simple to concatenate strings. This is accomplished using the
+ operator, which works differently with strings than numbers. Observe:
helloWorld$ = "Hello" + " " + "World!"

outcome: "Hello World !"

Similarly, the - operator also works on strings, removing a substring from
the end of a string, but only if the string indeed ends with the substring in
question:
helloWorld$ = "Hello World !"

hello$ = helloWorld$ - "World"

outcome: "Hello World !"

why? because helloWorld$ doesn 't end in "World", but in "World !"

hello$ = helloWorld$ - "World !"

outcome: "Hello "

As with mathematical functions and operators, string functions can be nested.
For instance, to get everything except the first 3 characters from a string, we
could do this:
helloWorld$ = "Hello World !"

from3$ = right$(helloWorld$, length(helloWorld$) - 3)

outcome: "lo World !"

which is the same as

from3$ = mid$(helloWorld$, 4, length(helloWorld$) - 3)

1.4.3 Variable evaluation

The crucial part of working with variables is the ability to use either their names
or their values. This means that in some situations, we will type the variable’s

24

name, but we want Praat to interpret it as if we had typed the variable’s current
value. This is called evaluating (or “substituting” or “expanding”) the variable.
In Praat, this is done by enclosing the variable’s name in single quotes (as in
'myVariable'). Figuring out when to evaluate a variable, and when to just use its
name is one of the tricky parts of writing Praat scripts.

However, a few examples should shed light on this mystery. We’ve already
used evaluation several times, in combination with the echo command. However,
as we saw in our very first script, the echo command simply outputs whatever
follows it on the same line.

echo This is a sentence.

output: This is a sentence.

If we have a variable called numberOfFiles and assign it the number 4, then
output this variable using echo, we have to use variable evaluation. Observe:

numberOfFiles = 4

echo numberOfFiles

output: numberOfFiles

however:

echo 'numberOfFiles '

output: 4

or , more verbosely:

echo number of files: 'numberOfFiles '

output: number of files: 4

As we’ve also seen, we can freely mix normal output text and evaluated
variables, all as the argument to the echo command.

So what happens when a variable is evaluated that has not been instantiated
yet? Observe:

echo 'noSuchVariable '

output: 'noSuchVariable '

(This may happen to you fairly often as you learn how to write Praat scripts,
and is usually caused by mis-typing variable names.)

As a rule of thumb, every variable in single quotes is evaluated before the
line itself is interpreted by Praat.1

Evaluating string variables works the same way, except that we use the string
variable’s name (i.e. echo 'myString$').

This raises an intriguing possibility.

Evaluating variables within strings

Since variables can be evaluated anywhere in a Praat script, we can use this to
evaluate a variable within a string ! This means that the following is possible:

a$ = "is"

b$ = "sentence"

1Cf. Paul Boersma’s explanation in the Praat User List.

25

http://uk.groups.yahoo.com/group/praat-users/message/2833

c$ = "This 'a$ ' a 'b$ '."

outcome: "This is a sentence ."

by the way , this is the same as ...

c$ = "This " + a$ + " a " + b$ + "."

... but slightly more intuitive !

In fact, this feature is the basis of Praat’s mechanism for arrays (cf. Sec-
tion 1.6).

Additionally, this is also how we can “convert” a numeric variable into a
string, and vice versa:

a = 1

a$ = "'a'"

outcome: "1"

a = 'a$'

outcome: 1

Note that the conversion from string variable to number only works if the con-
tents of a$ can be interpreted as a number.

1.4.4 Comparison operators

Finally, there are a few comparison operators, which are used almost exclusively
in condition statements (cf. Section 1.5.1), which return either “true” or “false”.
This is called a truth value (also referred to as a Boolean value). Praat has a
healthy, inherently binary, notion of truth values in that “false” is always 0 and
“true” is 1 (usually), or more generally, not 0.

Table 1.4: Comparison operators
Returns 1 iff

x x is not 0

not x x is 0

x and y x and y are both not 0

x or y either x or y is not 0

x = y (or x == y) x and y are the same
 works for strings, too!x <> y (or x != y) x and y are different

(same as not x = y)
x < y x is smaller than y

x <= y x is smaller than or equal to y

x > y x is greater than y

x >= y x is greater than or equal to y

. . . and 0 otherwise

As usual, these operators can be combined to allow complex conditions such
as (a = 2 and not b <= 10) or c$ <> "foo". You are strongly encouraged to use
parentheses to ensure proper grouping of multiple subconditions.

26

Note that the concepts “smaller” and “greater” are in fact applicable to
strings as well as numbers, but refer to alphabetical ordering, i.e. "a" < "b" is
true. In the same sense, upper-case letters are “smaller” than lower-case letters.2

1.5 Flow control

1.5.1 Conditions

Rather often in a script, there are instructions that should only be carried out
if certain circumstances are met, and not if they aren’t. This is what conditions
(also referred to as “jumps”) are for. Let’s look at an example:

Listing 1.8: if...endif
condition = 0

echo 'condition '

if condition

echo Condition has been met!

else

echo Condition has not been met!

endif

condition = 1

echo 'condition '

if condition

echo Condition has been met!

else

echo Condition has not been met!

endif� �
$ praat ifThenElse.praat
0
Condition has not been met!
1
Condition has been met!� �

Notice how in the first if...endif block, only the first instruction was carried
out, and in the second, only the second instruction. While the blocks themselves
are identical, the value of condition changed, which caused the condition given
after the if to evaluate to 0 in the first case, and 1 in the second.

In case we only want to do something if a certain condition is met, but
nothing if it isn’t, we can omit the else part.

On the other hand, if we want to differentiate between several cases if the
first condition is not met, we can use the elsif3 command, as in:

if not value

echo Value is 0

elsif value < 0

echo Value is negative

elsif value <= 10

echo Value is greater than 0 but no greater than 10

2This is because the values that are actually compared are the values of the ASCII codes
of the letters. Look it up!

3Instead of elsif, we can also write elif.

27

http://www.answers.com/main/ntquery?s=ascii

else

echo value must be greater than 10

endif

Only one of the echo commands will be carried out, depending on the value
of value. Note that if more than one condition evaluates to true, only the first
one will be applied.

1.5.2 Loops

The magic key to automating repetitive tasks are loops. Loops keep performing
instructions until a break condition (also referred to as an “exit condition” or
“terminating condition”) is met. There are three different flavors of loops in
Praat, repeat...until, while...endwhile and for...endfor loops. They all share
a dangerous pitfall: if the break condition is never, ever met, the script will
continue to run until the Praat task is ungracefully terminated by hand.4 This
is called an infinite loop, and Praat cannot help us detect one in advance. It’s
our responsibility to avoid these when using loops.

repeat loops

In a repeat...until loop (which we’ll call a repeat loop for brevity’s sake), all
instructions between the repeat and until lines are carried out repeatedly until
the break condition, supplied after the until, evaluates as true. This usually
means that we need some sort of conditional variable, whose value is checked
by the break condition.

Listing 1.9: repeat loop
counter = 10

echo Countdown:

repeat

echo 'counter '...
counter = counter - 1

until counter = 0

echo Blastoff!� �
$ praat repeatUntil.praat
Countdown:
10...
9...
8...
7...
6...
5...
4...
3...
2...
1...
Blastoff!� �

4In Windows, this is done with the Task Manager ; in Linux, using the kill command.

28

Note that even if the break condition is true from the start, the repeat loop
is still performed at least once.

while loops

The while loop works just like the repeat loop, except that the break condition
is defined at the beginning of the loop, right after the while. This means that
if the break condition is true from the start, the while loop is not performed at
all.

Listing 1.10: while loop
sentence$ = "This is a boring example sentence ."

searchChar$ = "e"

echo The sentence ...

echo "'sentence$ '"

numberFound = 0

while index(sentence$, searchChar$)
firstPosition = index(sentence$, searchChar$)
numberFound = numberFound + 1

sentence$ = right$(sentence$, length(sentence$) - firstPosition)

endwhile

echo ... contains 'numberFound ' "'searchChar$ '"s.� �
$ praat whileEndwhile.praat
The sentence ...
"This is a boring example sentence ."
... contains 5 "e"s.� �

If searchChar$ is not in sentence$ at all, the loop will be skipped.

for loops

As we will soon come to see, the most common type of loop by far involves an
iterator variable, while the break condition is simply a value this iterator must
not exceed.

This could easily be accomplished with a certain type of while loop:

Listing 1.11: for loop using while

iterator = 1

while iterator <= 5

echo 'iterator '
iterator += 1

endwhile� �
$ praat whileFor.praat
1
2
3
4
5� �

29

However, because it is so common, a streamlined syntax has been provided
for this type of loop, namely:

Listing 1.12: for loop
for iterator from 1 to 5

echo 'iterator '
endfor� �
$ praat forEndfor.praat
1
2
3
4
5� �

The for loop takes the variable whose name is provided after the for, sets it
to the value provided after the from, performs all instructions between the for

and endfor, increases the value of the variable by 1, and repeats, until the value
becomes larger than the value provided after the to.

In fact, from 1 is implicitly assumed, so we can even omit that bit if we want
to start iterating from 1. And just as with the while loop, if the break condition
is true from the start (e.g. for i from 2 to 1 or something similar), the loop will
not be executed even once.

1.6 Arrays

Combining for loops with what we learned in Section 1.4.3, we have everything
we need for another important concept in Praat scripting: arrays.

An array is essentially a group of variables that have names with numbers
in them. These variables are usually created within a for loop, and later used
in another loop. The punchline, however, is that in creating and accessing the
variables, the loops’ iterators are used within the variable names!

So we might have several variables called value_1, value_2, value_3, and so on,
and while this in itself is nothing new, it would allow us to do the following:

numberOfValues = 3

sumOfValues = 0

for i to numberOfValues

sumOfValues += value_ 'i'
endfor

So what’s going on? In the first iteration of the loop, sumOfValues is increased
by the value of value_1, in the second iteration, by the value of value_2, and in
the third and final iteration, by the value of value_3.

There are two important limitations here. The first is that we need some
variable (such as numberOfValues in the example) to keep track of how many
variables like value_1 there are. We have to know this, because we need this
number in the break condition of the for loop. If we were to try and access
something like value_4, and that variable had not been previously set, we would
tend to get an error.

The second limitation has not been shown, but would have become apparent
if we had tried to output the respective value within the loop, using echo. We

30

have to evaluate the variable in the argument to the echo command, but we
would have to nest one evaluated variable within another. However:

Listing 1.13: Evaluation nesting problem
value_1 = 1

value_2 = 2

value_3 = 3

for i to 3

echo 'value_ 'i''
endfor

let 's make things interesting :

value_ = 99

for i to 3

echo 'value_ 'i''
endfor� �
$ praat nestingProblem.praat
'value_1 '
'value_2 '
'value_3 '
99i''
99i''
99i''� �

As we can see, none of this worked as we hoped. The only solution is to
assign the desired variable to a “placeholder” variable, which we then output.

In fact, we can easily create and access “multidimensional” arrays by using
loops within loops. Observe:

Listing 1.14: A table of products
create the array

for x to 7

for y to 7

product_ 'x'_'y' = x * y

endfor

endfor

access the array to build the table

table$ = ""

for x to 7

for y to 7

this is the placeholder :

thisProduct = product_ 'x'_'y'
table$ = "'table$ ''thisProduct ''tab$ '"

endfor

table$ = table$ + newline$
endfor

output the table

echo 'table$ '

31

� �
$ praat tableOfProducts.praat
1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49� �

In this script, we additionally see that we can store a long string containing
several lines in a single string variable, which is then output with a single echo

command.5

Note that although the variables composing an “array” cannot be addressed
as a single entity (unlike in many other programming languages), we will nev-
ertheless uphold the custom of referring to such variables as elements of an
array, although the array itself is just a mental construct and has no concrete
manifestation in the Praat scripting language itself.

1.7 Procedures

Sometimes we will come across a portion of code in a script that occurs several
times in the script. It would be desirable to only have to write this code once
and then refer to it again as needed. This is where procedures come in.

A procedure is essentially a block of several instructions that are defined and
named, and which can then be called whenever needed. A call to a procedure
simply executes all lines of the procedure at the point where the call is made.
Observe:

Listing 1.15: Procedures
define an array of squares

for x to 10

square_ 'x' = x ^ 2

endfor

define a procedure to output this array

procedure output_array

for x to 10

square = square_ 'x'
printline 'square '

endfor

endproc

call the procedure simply with

call output_array

No matter where in the script the procedure is defined, it can always be
called, before or after the definition, which allows us to banish all tedious pro-
cedures to the end of the main script. In fact, it we can even “outsource” blocks

5Alright, I admit that we could have computed and output the respective product in a
single pass through a double loop, but I was trying to demonstrate array usage, and in the
real world, single passes will not always be possible. Just bear with me here!

32

of code that deal with one aspect of our script into individual procedures and
have a very elegant “main” script:

Listing 1.16: More procedures
begin main

call define_array

call output_array

end main

procedure define_array

for x to 10

square_ 'x' = x ^ 2

endfor

endproc

procedure output_array

for x to 10

square = square_ 'x'
printline 'square '

endfor

endproc

1.7.1 Arguments to procedures

Procedures can have arguments of their own. These are defined along with the
procedure simply by adding them to the procedure line. These arguments act as
variables in their own right, defined when the procedure is called.

When such call is made, these arguments must be passed to the procedure,
and the number and type (number or string) of the arguments must match
the procedure definition. Of course the arguments passed can also be variables,
but we should realize that they are different from the variables used within the
procedure!

Listing 1.17: Procedures with arguments
call define_array "squares" 10

call output_array "squares" 10

procedure define_array array_name$ array_size

for x to array_size

'array_name$ '_'x' = x ^ 2

endfor

endproc

procedure output_array array_name$ array_size

for x to array_size

square = 'array_name$ '_'x'
printline 'square '

endfor

endproc

It is important to remember that every string argument except the last must
be enclosed in double quotes. This may be slightly confusing, especially when
string variables are passed to a procedure as arguments, but we should keep
in mind that string arguments in a procedure call expect strings, not string
variables. Hence:

33

Listing 1.18: Procedures with arguments passed from variables
name_of_array$ = "squares"

size_of_array = 10

call define_array "'name_of_array$ '" size_of_array

call output_array "'name_of_array$ '" size_of_array

procedure define_array array_name$ array_size

for x to array_size

'array_name$ '_'x' = x ^ 2

endfor

endproc

procedure output_array array_name$ array_size

for x to array_size

square = 'array_name$ '_'x'
printline 'square '

endfor

endproc

This is equivalent to:

Listing 1.19: Procedures in “plain text”
name_of_array$ = "squares"

size_of_array = 10

this mimics calling the first procedure

array_name$ = "'name_of_array$ '"
array_size = size_of_array

for x to array_size

'array_name$ '_'x' = x ^ 2

endfor

at this point , we have an "array" of 10 variables :

squares_1

squares_2

...

squares_10

this mimics calling the second procedure

array_name$ = "'name_of_array$ '"
array_size = size_of_array

for x to array_size

square = 'array_name$ '_'x'
printline 'square '

endfor

Quoting string arguments

So what happens if we don’t wrap the string arguments in double quotes? Praat
makes assumptions about spaces, which are potentially not what we had in
mind. Observe:

Listing 1.20: Procedures with string arguments
procedure greet greeting$ name$

printline 'greeting$ ',
printline 'name$ '!'newline$ '

endproc

This works , but only because the first string contains no space

call greet Hello Mr. President

34

This no longer works

call greet Happy birthday Mr. President

Now with too many double quotes

call greet "Happy birthday" "Mr. President"

Finally , this works just as intended

call greet "Happy birthday" Mr. President

now the same with variables , which doesn 't work

happyBirthday$ = "Happy birthday"

mrPresident$ = "Mr. President"

call greet happyBirthday$ mrPresident$

because they must be evaluated

call greet 'happyBirthday$ ' 'mrPresident$ '

but as before , the first , and not the second , in quotes

call greet "'happyBirthday$ '" 'mrPresident$ '� �
$ praat procedures6.praat
Hello ,
Mr. President!

Happy ,
birthday Mr. President!

Happy birthday ,
"Mr. President "!

Happy birthday ,
Mr. President!

happyBirthday$,
mrPresident$!

Happy ,
birthday Mr. President!

Happy birthday ,
Mr. President!� �
1.7.2 Local variables

Normally, all variables declared within a procedure (starting with the procedure-
“internal” variables in the procedure definition) are available in the script, as
soon as the procedure has been called for the first time. This works just like with
normal variables, and these normal variables are referred to as global variables.

Within procedures, however, it is possible to declare and use local variables,
which means that they can be used only within the procedure. Outside the

35

procedure itself, these variables are unavailable. In Praat, local variables have
names that begin with a . (dot).6

Listing 1.21: Procedures with local variables
name_of_array$ = "squares"

size_of_array = 10

call define_array "'name_of_array$ '" size_of_array

call output_array "'name_of_array$ '" size_of_array

procedure define_array .array_name$.array_size

for .x to .array_size

'.array_name$ '_'.x' = .x ^ 2

endfor

endproc

procedure output_array .array_name$.array_size

for .x to .array_size

.square = '.array_name$ '_'.x'
printline '.square '

endfor

endproc

Note that the reverse is also true: local variables declared in the “main” part
of a script are not accessible within procedures. In fact, this entails that a local
variable in the main script and a local variable with the same name within a
procedure will not overwrite each other and could be used side-by-side, as shown
here:

Listing 1.22: Mutually “invisible” local variables
.foo$ = "foo"

echo '.foo$ '
call bar

echo '.foo$ '

procedure bar

.foo$ = "bar"

echo '.foo$ '
endproc� �
$ praat procedures8.praat
foo
bar
foo� �
1.8 Arguments to scripts (part 1)

Just as procedures can receive arguments, the entire script itself can also take
arguments, which are provided from the command line exactly as was detailed
in the preceding section for procedure calls. This is done with a form block.

form blocks work slightly differently from the rest of Praat script syntax.7

6This is the only exception to the rule that variable names in Praat begin with a lower-case
letter and consist only of letters, digits and underscores.

7This is due to the fact that they seem to have been designed primarily as a means to
create custom dialog windows in the graphical version of Praat. We will return to this in a
later chapter.

36

The form itself must be followed by a space.8 Between the form and endform

lines, there may not be any empty lines or comments, only a series of argument
(“parameter”) declarations. Each consists of the type of the argument (real or
text, for numbers or strings, respectively), a space and the name of variable the
argument will have in the script. Since the type is defined by the first part of
the declaration, the name of a string variable does not end in a $. Let’s have an
example:

Listing 1.23: Script arguments
form

real howMany

text greeting

text name

endform

echo 'howMany ' 'greeting$'s, 'name$ '!� �
$ praat form.praat 100 "Happy birthday" Mr. President
100 Happy birthdays , Mr. President!� �

Quotes around string arguments are handled similarly, but not identically,
because the arguments are first split according to the operating system’s rules
for command line arguments, and then passed to the Praat script. This should
not create insurmountable problems, though; if in doubt, just try it out.

1.9 External scripts

Apart from using procedures, there are two other ways to re-use code in Praat
scripts: including another script and executing it.

1.9.1 include

The include command takes as its only argument the name of another script file.
This other script file is then “inserted” into the including script at run time,
just as if all lines in the included file had been typed into the including script
at the point where the include command was issued.9 Of course, it is possible to
include multiple scripts. Note that Praat will perform include commands before
anything else in the script, so we cannot use a variable to provide the filename
of the included script.

Global variables in included scripts will count as global variables in the
including script, so take care to check which variable names are used in scripts
before you include them, or you might inadvertently overwrite variables in the
including script. . .

The most effective way to use the include command is to use it with scripts
that contain nothing but procedures, thereby providing these procedures to

8. . . followed by the dialog window’s title, which is ignored in command line use.
9Praat’s behavior in the regard goes as far as counting lines in the including script as if all

lines of the included script were actually present in the including script. This means that if
Praat gives an error message about something that happens in the including script after the
include command, we will have to subtract the number of lines in the included script from
the line number of the error to find the actual line number of the offending command in the
including script.

37

the including script without actually doing much at include time. Combining
this approach with the use of local variables makes it rather safe concerning
accidental variable overwriting.

1.9.2 execute

Another way to have one script use another one is the execute command. In
contrast to the include command, this simply runs the executed script from
start to finish, then returns control to the executing script and continues with
it. No variables are shared or overwritten.

If the executed script takes any arguments (using form...endform), these must
be provided along with the execute command. Passing these arguments works
syntactically exactly as passing them from a procedure call (cf. Section 1.7.1)
or from the command line.

1.10 File operations

Praat provides a limited number of functions and commands to query, read and
write files. But first, a word about paths.

1.10.1 Paths

If a Praat script is to access any file (even another script) that is not in the same
directory as the script itself, we have to supply the path to the file, either as
an absolute or relative path. The exact format of absolute paths depend on the
operating system under which we’re running the script. Table 1.5 gives a few
examples. What these absolute paths have in common is that they are fixed; if
we move our script to another directory and run it from there, files given with
absolute paths will still be found.

Table 1.5: Examples of absolute paths
Windows "C:\Documents and Settings\John Doe\Desktop\praat"
Linux or
MacOS X

/home/jdoe/Desktop/praat or
∼jdoe/Desktop/praat

MacOS ≤9 "My Disk:Desktop:praat"

However, it is usually preferable to use relative paths. These take the script’s
directory as the base, and work from there. So if we have our script in a directory,
along with a subdirectory called "Sounds" containing some sound files (e.g.
abc.wav) which we want to access with our script, we would simply precede
references to these files with the name of the directory, followed by a forward
slash / (e.g. Sounds/abc.wav).

The main advantage of using relative paths is portability. We can move the
script and the relevant subdirectories to another location (directory or disk), and
everything will work just as before. Also, since relative paths in Praat scripts
always use forward slashes, scripts are even portable across different operating
systems.

38

1.10.2 File I/O

File input and output (“I/O”) is extremely easy in Praat scripts. The only thing
we need is a string variable and the relevant I/O operator, <, >, or >>.

Reading a file

To read the entire contents of a text file into a string variable, use the < operator.

Listing 1.24: A text file
This is a text file containing several "sentences ",...

...an empty line , and some numbers , separated by tabs:

123 456.67 89000

Listing 1.25: Praat script to read a text file
foo$ < foo.txt

The following expression is now true:

foo$ == "This is a text file containing several "" sentences "" ,..."

... + "'newline$ ''newline$ '...an empty line , and some numbers , "

... + "separated by tabs:'newline$ ''tab$ '123'tab$ '456.67 'tab$ '89000"

Writing a file

To write the contents of a string variable to a text file, use the > operator instead.
Be careful; if the file already exists, its contents will be deleted first!

Appending to a file

Appending to a file uses the >> operator and works just like writing, with one
exception: if the file already exists, the contents of the string variable is added
at the end of the file.10

Another way to append text (not just string variables) to a file is the
fileappend command. This command is followed by the filename, and every-
thing after that (to the end of the line) is treated as the string to be appended.
This works similarly to the echo command. If the filename is stored in a string
variable, that variable must be evaluated and enclosed in double quotes.

greet$ = "Hello"

fileappend hello.txt 'greet$ ' World!� �
$ cat hello.txt11

Hello World!� �
10In fact, > and >> behave exactly as the respective output redirection commands in Win-

dows/DOS and Linux.
11cat is a Linux tool that can print the contents of files to the screen. The equivalent

Windows/DOS command is type.

39

1.10.3 Deleting files

A file can be deleted simply by using the filedelete command, followed by the
name of the doomed file. If the file does not exist, the command has no effect.
filedelete can be useful in combination with fileappend, in case we want to write
more text than just the contents of a string variable to a file, but don’t want
that file’s previous contents (if any) to survive.

1.10.4 Checking file availability

Sometimes it is important to know whether a certain file exists. For instance,
trying to read a file that isn’t there will usually cause an error. In such cases, we
can use the fileReadable function to have our script check for the file’s existence
first. The only argument to this function is the filename (as a string; a string
variable should not be evaluated here!), and the function returns a boolean (i.e.
1 if the file can be read, 0 otherwise).12 See Section 1.11.1 for an example.

1.11 Refined output

The echo command is not the only way to print text to the screen. There is also
the printline command, which is essentially equivalent as long as we are using
Praat scripts from the command line.

If we don’t want to have the automatic line break at the end of an out-
put command, we can use the print command. This allows us to print some
text to the screen, then do something else, and print some more text into the
same line as the last text we printed. Hence, printline hello is equivalent to
print hello'newline$'.

1.11.1 Controlled crash with exit

If we want to abort the script for any reason, we can issue the exit command.
Any further text in the same line will be printed to the screen, in addition to
Praat’s standard error message. This allows us to terminate a script early on,
before a more serious error can occur, which can be a good thing e.g. in case
a script argument is not what we intended. It also allows us to inform the user
about the reason for the exit command.

Listing 1.26: Catching an exception with exit

filename argument received from command line

form

text filename

endform

no filename received?

if filename$ = ""

exit no input file specified!

filename reveived , but file not found?

elsif not fileReadable(filename$)
exit input file "'filename$ '" not found!

endif

12As the function’s name implies, fileReadable will also return 0 if the file exists, but we
don’t have permission to read it, which can occur on Linux type filesystems.

40

read file

filetext$ < 'filename$ '

just print file contents to screen

print 'filetext$ '� �
$ praat exit.praat
Error: no input file specified!
Script "exit.praat" not completed.
Praat: command file "exit.praat" not completed.

$ praat exit.praat noFile
Error: input file "noFile" not found!
Script "exit.praat" not completed.
Praat: command file "exit.praat noFile" not completed.� �

If all we want to do is make sure the script does not continue unless a certain
condition is met, we can use the much shorter command assert. This command
is followed by a statement, and if that statement is false, Praat will terminate
the script with a standard error message. Using assert is much quicker than
checking for conditions explicitly and using exit, but the tradeoff is that we
cannot change the format of the error message:

Listing 1.27: Catching an exception with assert

form

text filename

endform

assert filename$ <> ""

assert fileReadable(filename$)

filetext$ < 'filename$ '

print 'filetext$ '� �
$ praat assert.praat
Error: Script assertion fails in line 5 (false):

filename$ <> ""
Script "assert.praat" not completed.
Praat: command file "assert.praat" not completed.

$ praat assert.praat noFile
Error: Script assertion fails in line 6 (false):

fileReadable(filename$)
Script "assert.praat" not completed.
Praat: command file "assert.praat noFile" not completed.� �

41

1.12 Self-executing Praat scripts

It is possible to have scripts run by themselves without explicitly calling the
praat command and passing the script as the first argument. Depending on the
operating system, the procedure to set this up can vary.

Note that this is essentially a cosmetic feature and intended only for ad-
vanced users.

1.12.1 Linux

Under Linux and similar operating systems, we need two steps to make a script
self-executing:

1. add a special line at the top of the script13 containing the path to the
praat program

2. make the script file executable by modifying its file permissions

Below is an executable version of helloWorld.praat:

Listing 1.28: “Hello World!” in Praat, executable
#!/ path/to/praat

echo Hello World!� �
$ chmod +x helloWorldExe.praat
$./ helloWorldExe.praat
Hello World!� �
1.12.2 Windows

In Windows, we can make Praat scripts self-executing by configuring the file
association of “PRAAT Files” (i.e. files whose name ends with .praat, the “file-
name extension”) so that they are automatically opened with the praatcon.exe
program. The exact procedure depends on the version of Windows, as well as
several other factors too Windows-specific to be listed here, but usually involves
double-clicking a script file and taking it from there.

Note that while we should now be able to run a Praat script simply by
double-clicking it, it will open a command prompt window to run the script
and close this window again automatically (configuring Windows to keep the
window open for review can be tricky.)

However, we can now simply enter the script filename on the command line,
and Windows will automatically use praatcon.exe to run the script:� �
> helloWorld.praat
Hello World!� �

Note that Windows classifies files exclusively by filename extension, so if you
use a different extension for Praat script files (such as .psc or .script), you
will have to modify your file type settings accordingly.

13This must indeed be the first line of the script and consist of a #!, followed by the absolute
path to the praat binary. This works exactly as with bash, perl, python, and similar scripts.

42

1.13 System calls

The following is also relevant only to advanced console jockeys.
It is possible to have Praat make a system call to the operating system,

executing a command that would normally only be usable on the command line.
Since this depends entirely on the operating system under which the Praat script
is being executed, the possibilities are far beyond the scope of this introduction.
The command for making such system calls is system, the rest of the line being
interpreted by the operating system. In case a system call could return an error,
we can instead use the system_nocheck command to keep the Praat script from
terminating at that point.

As an afterthought, there is also a way to make Linux-type environment
variables available to a Praat script, by using the environment$() function, which
takes a single string argument, the name of the environment variable, and re-
turns its value. So under Linux, environment$("PWD") == shellDirectory$.

43

Chapter 2

Praat GUI

While we can theoretically accomplish a lot with command line use of Praat
scripts, the full set of Praat features is available only through the Graphical
User Interface (“GUI”). Praat is obviously much more than a script interpreter;
its main focus lies in phonetic analysis, and for this, we need visualization and
editing capabilities. In fact, there are hundreds of Praat commands that only
make sense when we work with object selection, which is entirely hidden and
non-interactive if we use Praat from the command line. The only way to discover
these commands (and their arguments) is to work with Praat graphically, and
even if a script is designed to be run from the command line, it is almost always
developed graphically first.

We should keep in mind, though, that calling scripts from the command line
is more efficient (i.e. faster) when processing large amounts of data or complex
computations, and so such “batch processing” scripts should be designed with
command-line use in mind.

2.1 Object Window

The graphical interface of Praat is started by executing the praat program with
no argument. Under Windows, it is actually a different program, praat.exe, as
opposed to the command line only version, praatcon.exe.

When Praat starts, we see two windows, the Object Window (“Praat ob-
jects”) and the Picture Window (“Praat picture”). For now, we will ignore the
Picture Window. In fact, we can close that window for now.

There are essentially four areas of the Object Window which demand expla-
nation:

1. the menu bar at the top of the Object Window, consisting of the Praat,
New, Read, and Write menus

2. the object list, entitled “Objects”, is where objects can be added, selected,
and removed

3. the dynamic menu to the right of the object list, containing a number
of buttons and button menus; its contents changes according to type and
number of objects selected in the object list (if none are selected, the
dynamic menu will be empty)

44

Figure 2.1: Praat Object Window in Linux/KDE, with a Sound loaded

4. the area below the object list, which has no proper name, but always
contains the buttons Rename..., Info, Copy..., Remove, and Inspect, which
can be applied to all types of objects

2.1.1 Menu bar

The entries in the menu bar are all Praat commands, and mostly static. This
means that (with the exception of the Write menu) they can be used regardless
of the contents and state of the object list. Those that cannot be used at a given
time will be visible, but disabled (“grayed out”).

2.1.2 Objects

All objects in Praat appear in the object list until they are removed or Praat
is closed. Each object entry consists of that object’s class and its name. The
class of the object can be Sound or TextGrid or something else. The name can
consist of any sequence of letters, digits, and underscores.1 Any other character
supplied as part of an object name will be converted to an underscore. It is
possible, though potentially confusing, to have more than one object with the
same name, even when the class is the same.

For this reason, Praat uses unique internal ID numbers to keep track of the
objects in the object list. The first object placed in the list after Praat has been

1Unlike scripting variables, object names can begin with an uppercase letter, digit, or
underscore.

45

started gets the ID 1, the second, 2, and so on. If an object is removed, that
object’s ID is not freed up for re-use; Praat’s internal counter assigning IDs is
never reduced.

It is fairly obvious that objects can be renamed with the Rename... button and
duplicated with the Copy... button. What is not so obvious is that the order of
objects in the list can never be modified. This entails that an object will always
have a higher ID than objects above it in the list, and a lower ID than objects
following it.

Object selection

In the Object Window, objects are selected by clicking on them with the mouse.
Any previous selection is deselected. We can also “drag” the mouse pointer over
several objects to select them all. Alternatively, holding the Shift key while
clicking an object will select that objects, as well as all other objects between
that object and the current selection, while holding the Ctrl key and clicking an
object will add only the clicked object to the current selection. Holding these
keys can of course be combined with dragging the mouse pointer.

All currently selected objects are collectively referred to as the current se-
lection.

Removing objects from the object list is done with the Remove button, which
removes all currently selected objects.

2.1.3 Dynamic menu

The contents of the dynamic menu depends entirely on the current selection. Se-
lecting a single object will show all available commands for that class of object,
but selecting multiple objects will usually decrease the number of available com-
mands, in many cases down to none. Sometimes, however, certain commands
will become available only if a specific combination of objects is selected. In
Section ??, we will see how this specification works when we learn how to ma-
nipulate the dynamic menu and add custom buttons. If no object is selected,
the dynamic menu will also be empty.

2.2 Script Editor

By choosing the command New Praat script from the Praat menu, we can open
a fresh Script Editor window. This is where scripts are developed and run in
the graphical version of Praat.

The Script Editor is a simple text editor, lacking many of the fancy features
present in full-fledged editors but containing a few features specific to Praat.

We can write a new script, save it, or load a previously saved script from a
file (using the appropriate command from the File menu). The Where am I? and
Go to line... commands in the Search menu return the number of the line the
cursor is on, or send the cursor to the specified line, respectively.

2.2.1 Running scripts

To have Praat execute the script currently in the Script Editor, select the Run

command from the Run menu. Additionally, we can also select only a portion

46

of the script and use Run selection command to have Praat execute only the
selected lines of the script, ignoring all others.2

2.2.2 Command history

A unique feature of the Script Editor is its access to Praat’s command history.
Praat records every click on an object, button or menu entry, and they can all
be retrieved with the Script Editor’s Paste history command, found in the Edit
menu. Note that the entire command history will be inserted at the current
cursor location and usually contains many more commands than we need, many
of them selection commands. We can, however, use the Clear history at any time
to erase all recorded commands and begin anew.

The history mechanism can be quite useful and instructive to scripting be-
ginners, because it outputs everything as a well-formed script which, if run,
does exactly what the user did up to the point of the Paste history command.
The drawback is that the power of such scripts is very limited. The history’s
contents is simply a batch of commands, one after the other, and makes no use
whatsoever of variables, loops, or more advanced techniques. Therefore, a script
“written” exclusively with the history mechanism will seldom enhance produc-
tivity compared to doing everything manually. On the other hand, if in doubt
of the correct syntax for a command with many different arguments, the easiest
solution is to use the command once and then noting the command history’s
last entry.

2.3 Output

Since we can no longer receive output on the terminal (“standard out”) in the
Praat GUI, there are other analogous strategies, and even some new ones, to
output information.

2.3.1 Info Window

A window that is initially not visible but that will appear when needed is the
Info Window (“Praat: Info”). It looks just like another text editor window, and
you can even type into it and delete text and so forth, but this window is where
Praat directs almost all of its output. Whenever a command is used that returns
output, that output will appear in the Info Window. Note that every time this
happens, the previous contents of the Info Window will be deleted.

The contents of the Info Window can also be cleared by hand (usind the
Clear command from the File menu), or saved as a text file, or copied, etc. The
Info Window can also be closed; it will reappear as required.

In scripts, the Info Window can be cleared with the clearinfo command.
The Info Window is also where the output of echo, printline, and print will be
displayed in the Info Window as well. This is also where the difference between
echo and the two print commands is finally explained; the former will clear the

2Note that any variables declared before the selection start will not be available, so this
approach is of limited use. To debug a script, make liberal use of comments to disable various
lines.

47

Info Window before writing to it; the latter two will only append to it. This
means that
echo

is equivalent to
clearinfo

printline

or
clearinfo

print 'newline$ '

Beware of accidentally overwriting your script’s output with multiple echo

commands; this can become the cause of a lengthy and frustrating bug hunt!
Conversely, if you use only print commands, you may end up not seeing your
script’s output as it becomes appended below the visible edge of the Info Win-
dow. We can avoid this with a single clearinfo at the beginning of the script.

The contents of the Info Window can also be appended to a text file with
the fappendinfo command, which works similarly to the fileappend command (cf.
Section 1.10.2).

2.3.2 Error messages

Not all output is written to the Info Window. The other way Praat can give
us feedback is through messages. These appear as small pop-up windows and
usually give us some sort of warning or error message. This is how Praat tells
us about errors in a script, for instance. If we use the exit command (cf. Sec-
tion 1.11.1) in a script, it will also generate such a message window.

Figure 2.2: Error message about faulty scripting command

2.3.3 Other forms of output

Another way to give feedback to the user during a script is to use the pause

command, which works similarly to exit, but simply displays our text, along
with two buttons, “Continue” and “Stop”. As expected, the former will let the
script continue, the latter will abort. This raises interesting possibilities in script
usability design but should not be overused. Note that this command is ignored
in command-line use.

Some commands in Praat are expected to take relatively long to complete.
For instance, creating a Pitch object from a Sound will take longer, the more

48

Figure 2.3: Error message about faulty Praat command

samples must be processed. In such cases, Praat will show a Progress Window
which allows some estimate of how long the command will take to complete.
There is also an Interrupt button in the Progress Window, which allows us to
abort the process (which is useful in case we e.g. want to modify some command
parameters to decrease processing complexity).

Figure 2.4: Progress Window showing To Pitch... process

2.4 Objects in scripts

A Praat script can select objects and run available commands (“buttons”) just
as easily as if we used the mouse to do everything by hand, but very much
faster! In fact, most scripts will perform such “actions” in the blink of an eye.

2.4.1 Object selection commands

To select an object with a script, we use the select command, which is equivalent
to clicking on the object. Of course we have to supply an argument to the
command specifying which object should be selected. This can either be the
object’s class and name (separated by a space), or its ID. So if we have a Sound
object named My_Recording in the object list, we can select it with a script with
the command select Sound My_Recording . Of course, nothing prohibits another
Sound with the same name from existing in the object list, and in cases of
ambiguity, the last object will always be selected.

For this reason, it is generally preferable to use the select command with
object IDs instead of names, in which case the object class is omitted. So if
the Sound named My_Recording that we want to select has the ID 44 (being the

49

44th object placed in the object list since program start), we can have the script
select it simply with the command select 44.

To select more than one object at once, we must add to an existing selection,
using the command plus, which otherwise works just like select. If the object
happens to be already selected, plus does nothing. To remove an object from the
selection, use the minus command. Again, if the specified object is not selected
anyway, minus does nothing. Note that we can use minus to deselect the last
object in the selection, thereby clearing the selection. Likewise, we can use plus

even if no object is currently selected.
To simply select all objects in the object list at once, use the command

select all.

2.4.2 Querying selected objects

So how do we find out the name of an unknown object, let alone the internal
ID (for which there doesn’t seem to be a proper command)? We use one of two
functions, selected$() or selected(). Notice how the first returns a string and the
second, a number. These return values will be the selected object’s class and
name, or ID, respectively.

There’s more to these functions, however. If the selection contains more than
one object, we can pass either, or both, of two arguments. The first is the class of
the object we’re interested in (passed to the function as a string), in which case
selected$() will return only the object’s name, and the other is a number. This
number n returns the name or ID of the nth object in the selection, starting from
the top.3 If we want to count from the bottom, we simply specify a negative n
argument.

To get the number of selected objects, use the function numberOfSelected(),
and to get only the number of selected objects of a certain class (presumably
from a selection also containing objects of other classes), provide this function
with the desired class as a string argument.

Time for a few examples (which assume we have a selection corresponding
to Figure 2.5 and no objects have been removed since Praat was started):

name$ = selected$ ()
outcome: "Sound foo"

id = selected ()

outcome: 2

secondObject$ = selected$ (2)
outcome : "Spectrum foo"

secondID = selected (2)

outcome: 3

secondSoundName$ = selected$ (" Sound", 2)

outcome: "foo"

secondSoundID = selected ("Sound", 2)

outcome: 10

lastIntervalTierName$ = selected$ (" IntervalTier", -1)

outcome: "bar"

3In fact, selected() is simply shorthand for selected(1).

50

Figure 2.5: Praat Object Window with various objects selected

thirdToLastObject$ = selected$ (-3)
outcome: "TextGrid foo"

firstIntervalTierID = selected (" IntervalTier ")

outcome: 5

secondToLastIntervalTierID = selected (" IntervalTier", -2)

outcome: 5

seventhObjectClass$ = extractWord$(selected$ (7), "")

outcome: " TableOfReal "

numberOfSelectedObjects = numberOfSelected ()

outcome: 8

numberOfSelectedSounds = numberOfSelected ("Sound")

outcome: 2

Applying this to what we already know about arrays, we could easily store
the IDs of all selected object in an array, to later recall the initial state of the
selection:

Listing 2.1: Store IDs of selected objects in array
obj_num = numberOfSelected ()

for o to obj_num

obj_ 'o'ID = selected(o)

endfor

51

2.5 Praat command syntax

Notice how all menu commands and buttons in the various Praat windows
begin with a capital letter or digit. This is the exact opposite of the scripting
commands we have seen so far, which all begin with a lower-case letter. In
general, the scripting commands are only available in scripts while the Praat
commands beginning with a capital letter (or digit) can also be clicked on by
hand when using Praat graphically and interactively.

2.5.1 Praat commands in scripts

We can use all of Praat’s commands in scripts. However, we have to make sure
that the command is available (i.e. visible and not grayed out) at the point in
the script where it is used. Otherwise we will get an error message about the
command’s unavailability (cf. Section 2.3.2).

When we use such a command, we have to take special care to type it on
its own line in the script, exactly as it appears on the button or in the menu.
That means we have to pay extra special attention to capitalization, spaces, and
other characters (such as parentheses, numbers, etc.). Otherwise, we’ll get an
error.

Arguments to Praat commands

There are many Praat commands that pop up Dialog Windows, asking for ar-
guments of certain types. These commands invariably end in ... (three dots),
which is Praat’s indication that arguments must be supplied. When such a com-
mand is called in a script, the arguments must be given after the command, in
the same line, separated by single spaces. This works similarly to arguments to
procedures (cf. Section 1.7.1), with a few differences regarding double quotes
and variable evaluation:

� Numeric arguments to Praat commands may, but don’t have to be enclosed
in double quotes.

� Numeric variables supplied as numeric arguments may, but don’t have to
be evaluated.

� String arguments to Praat commands may, but don’t have to be enclosed
in double quotes, with two exceptions:

1. string arguments containing a space must be quoted;

2. the last argument must never be quoted, even if it is a string con-
taining a space!

� Variables supplied as string arguments (or parts of string arguments) to
Praat commands must always be evaluated.

Some Praat commands may require other types of arguments, namely check-
boxes, radio buttons, or pulldown menus:

52

Figure 2.6: Example of other argument types

A checkbox is essentially a boolean, either on or off, true or false, and hence,
a checkbox argument can be supplied as either 1 or 0.4 However, we can also
use yes and no instead, respectively.

Radio buttons and pulldown menus are essentially identical, except in ap-
pearance. Their arguments are strings and must be passed as exactly as the
respective buttons or menu entries are presented in the dialog.

Assuming there were a Praat command called Other types of arguments...

and Figure 2.6 displayed its dialog and the accompanying arguments, the fol-
lowing example illustrates its syntax in a script:
this works

Other types of arguments ... 1 0 "Choice A" Choice B

this works as well

Other types of arguments ... yes no "Choice A" Choice B

this would NOT work

Other types of arguments ... 1 0 "Choice A" "Choice B"

because there is no pulldown menu item "" Choice B""

and neither would this

Other types of arguments ... 1 0 Choice A Choice B

because the radio button would receive the string argument

"Choice" and the pulldown menu "A Choice B"

If you have trouble figuring out the correct scripting syntax for a command
with complex arguments, remember the Command History (cf. Section 2.2.2)!

Redirecting output into variables

Every Praat command that outputs some form of information to the Info Win-
dow can have its output redirected and assigned to a variable. This variable
will be a string, except if it begins with a number. In this case, it can also be
assigned to a numeric variable, but everything after the number (usually a unit
of measurement in the command output) will be removed.
duration$ = Get total duration

outcome: "5 seconds"

duration = Get total duration

outcome: 5

4Note that the distinction is not just between 0 and not 0 as with scripting booleans, but
between 0 and 1; any other numeric value is not allowed here.

53

Trying to assign non-numeric output to a numeric variable will result in an
error.

Suppressing warnings and progress dialogs

Sometimes Praat will display a warning or error message, or a progress window.
Assuming we know what we are doing, we may find it undesirable to have
this kind of output during execution of a script. If a command might output
a warning message, we can prefix the command with the nowarn command. To
suppress an error message, use nocheck. And to suppress a progress window, use
noprogress.

stereo files read normally issue a warning and are read as mono

nowarn Read from file ... mySoundWhichMightBeStereo.wav

no progress window regardless of how long this will take

noprogress To Pitch ... 0 75 600

even if there is no object selected

nocheck Remove

nocheck can cause serious problems if used incorrectly. Do not use it unless
you can be sure of what will happen, and that the error is something non-critical.
Even then, there might be better ways to accomplish it.

2.6 Editor scripting

The only Praat commands easily available to a script are those in the Object and
Picture Windows. This means that initially, all commands in the various Editor
Windows are unavailable. Thankfully, there is a way for a script to “enter” an
Editor Window and use all commands available there. This is accomplished via
an editor block.

Listing 2.2: Enter and use Sound Editor window
make sure we have exactly one Sound selected

assert numberOfSelected () == 1

assert extractWord$(selected$ () ,"") == "Sound"

remember the Sound 's name ...

soundName$ = selected$ (" Sound ")

create the Editor Window

Edit

enter the Editor Window named for the Sound

editor Sound 'soundName$ '

#

do things in Editor Window

#

close Editor Window

Close

endeditor

The editor statement takes two arguments, the class and name of the object
being edited. These can be easily seen in the title bar of the Editor Window

54

itself, but for a script to use these dynamically, we have to query the object as
described in Section 2.4.2.

Note that while in the editor block, only the commands in the Editor Window
are available for scripting; Praat commands in the Object and Picture Windows
are not available again until after the endeditor statement. Also note that editor
scripting is not possible when running Praat scripts from the command line.

2.6.1 Sound Editors

Commands in Editor Windows that display a Sound’s oscillogram (“waveform”)
and (optionally) its spectrogram, intensity, pitch, formants, and glottal pulses
can be difficult to use in scripts. This is due to the fact that only the visible
analysis components are available to the commands, while the commands usually
depend on the current position of the cursor. This means that three things play
a role here:

Visibility of analysis

To ensure that a certain analysis is visible, we can use the Show analyses...

command from the View menu with appropriate arguments.

Figure 2.7: Show analyses... dialog

Additionally, the “Longest analysis (s)” argument determines the maximum
length of the viewed part of the Sound. If the current view shows more than
this, none of the analyses will be visible, and commands such as Formant listing

will fail with an error message.

Zoom

To make sure we view an appropriate part (“window”) of the Sound (and that
the current view is not longer than the “Longest analysis (s)” (cf. previous
Section), we can use the Zoom... command from the View menu, or commands
like Zoom to selection (cf. next Section). Zoom in is probably not specific enough.

Cursor position and selections

We can also move the cursor to a specified position with the Move cursor to...

command from the Select menu, or we can specify a selection with the Select...

command. There are several related commands in the Select menu that could

55

be useful in this regard. What is important is that we can control the cur-
sor and selection, which determines the output of other commands such as
View spectral slice or Extract visible pitch contour.

It is important to realize that almost all analyses and extraction commands of
an Editor Window are also available as similar commands in the Object Window,
usually in Query or Modify submenus in the dynamic menu. For scripting, it
is generally easier and more precise to use the Object window’s commands and
avoid using the Editor Windows.

2.7 Picture Window

The Picture Window is one of the powerful, but commonly underestimated
features of Praat. It allows us to produce graphics and illustrations (usually, but
not necessarily, based on Objects), which can be helpful for data analysis, and
additionally be exported as vector-based image files for insertion into research
papers and reports.

2.7.1 Picture Window basics

The Picture Window is essentially an (initially) empty canvas measuring 4×4
squares (delimited by yellow lines), each 3 inches on each side, as indicated by
the rulers at the canvas edges (which are labeled from 0 to 12). By default, only
the left half and top three quarters of this canvas are visible.

In addition, there is a pink selection rectangle, which can be created by
dragging the mouse. Note that it is not possible to modify this selection by
dragging its edges, so the selection behaves much like a selection in a Sound
Editor, albeit in two dimensions.

The selection actually consists of two rectangles, the outer viewport and
the inner viewport. It is the area between these two viewports that is filled in
pink.5 The inner viewport is where most of the graphics should be created,
while the outer viewport serves as an outer guideline for axis labels, titles and
things of the sort. The behavior of the mouse with regards to viewport cre-
ation, as well as the obligatory precise commands Select inner viewport... and
Select outer viewport... are found in the Select menu.

Before we continue, let’s have an example of how the viewport determines
what will be drawn in the Picture Window. With the default viewport (6×4),
the script

Listing 2.3: Create 1kHz sine and draw its spectrum
Create Sound ... sine_1kHz 0 1 22050 1/2 * sin(2 * pi * 1000 * x)

To Spectrum ... no

Draw ... 0 0 0 0 yes

results in the Picture Window contents shown in Figure 2.10:
The Draw... command available for Spectrum objects has a number of pa-

rameters (cf. Figure 2.8) that determine which portion of the spectrum will be
drawn, as well as the scale. The “Garnish” option adds the frame along the

5The difference in size between the inner and outer viewports is determined by the currently
selected font size, see below.

56

Figure 2.8: Draw... dialog

Figure 2.9: Empty Picture Window Figure 2.10: Result of Listing 2.3

inner viewport edge, as well as the axes’ labelings. Notice how these labels were
drawn into the area between the inner and outer viewports.

There are many commands such as Draw... available for the various object
classes, and not many of them leave anything to be desired. Remember that
these graphics are not meant to rival the editors, but to present a possibility of
exporting analysis data in a perfect format.

Don’t use screenshots!

If you ever want to export anything visual from Praat to be included in a re-
search paper or other publication, do not use screenshots of an editor window
or anything of the sort. Doing so will create a pixel-based image with a res-

57

olution no higher than that of the screen from which it was captured. Print
resolution will almost always be much higher, so the image will be blocky or
blurry, depending on how it was processed, but never look good.

Also, pixel-based images tend to consume rather large amounts of mem-
ory (each pixel is stored individually), unless compression is used. One of the
most common types of image compression is JPEG, which, when configured
improperly, will introduce artifacts along high-contrast edges. Programs such
as Microsoft Word tend to make the worst of such images when it comes to
printing.

Additionally, window borders distract from the analysis you’re trying to show
with your image, and if you want your readers to know that you used Praat,
you should state it in the text. Showing additionally that you were running e.g.
Windows XP with the “Energy Blue” Theme is not desirable, and the names of
files or objects you analyzed are details that are usually irrelevant.6

The solution to these issues is to export the contents of the Picture Win-
dow to a file that recreates it using vector graphics. One such format is En-
capsulated PostScript, created with the Write to EPS file... and its variants,
which can be easily converted to any other vector-based format using appro-
priate software. Another is Microsoft’s Enhanced Metafile format, which is well
suited for insertion into Microsoft Office documents. The required command,
Write to Windows metafile..., however, is available only in the Windows version
of Praat.

Vector images can be enlarged arbitrarily without reducing edges or intro-
ducing artifacts, because their components are essentially continuous functions,
which are sampled and redisplayed optimally whenever they are rendered.7 Since
these components in most cases take up very little memory, vector images are
also very efficiently stored. (The exception is a pixel image within a vector image,
which is, of course, a series of colored squares.)

In fact, the contents of the Picture Window displayed in Figure 2.10 could
be exported as an eps file and inserted into a LATEXdocument such as this one
directly, with code like this:

\begin{figure}

\includegraphics{spectrum1kHz}

\end{figure}

Observe:

2.7.2 Custom drawing commands

Besides exporting graphics to files for insertion into documents, we can of course
draw arbitrary graphics into the Picture Window. There are a number of com-
mands at our disposal, and scripting makes them efficient to use.

Preliminaries

Similar to the Info Window, drawing commands will not clear the Picture Win-
dow, so to start with a blank canvas, we can issue the Erase all command in the
Edit menu.

6I realize that I’m ranting against everything I’ve done myself in this document, but I’m
trying to focus on the interaction with Praat itself, not the data!

7Incidentally, this is conceptually quite similar to digitization of audio signals!

58

Frequency (Hz)
0 11025

So
un

d
pr

es
su

re
 le

ve
l (

dB
/

H
z)

40

60

80

We can try out various drawing commands by hand, and whenever we make
a mistake, we can use the Undo command (also in the Edit menu), which can
come in handy.

Most commands that draw lines, shapes are modified by the current settings
in the Pen menu. These include the line type (solid, dotted or dashed) and
width, controlled with the commands Solid line, Dotted line, Dashed line, and
Line width..., respectively.

Likewise, Text printed to the Picture Window can be controlled with respect
to font size (Font size...) and family : Times, Helvetica, New Century Schoolbook,
Palatino, and Courier, all in the Font menu. Several common font sizes can also
be specified directly, with the commands 10, 12, 14, 18, and 24 (which may look
strange in a script, on a line all by themselves, but are nevertheless valid Praat
commands).

Furthermore, lines, shapes, and text can be colored with the following palette:

Axes and scale

While the rulers along the edges of the Picture Window aid in selecting the
viewport’s proportions, they have nothing to do with the actual coordinates
used to draw objects in the Picture Window. The coordinate system is defined
using the command Axes... (found both in the Margins and World menus).
This can be arbitrary, and redefined as desired; in fact, the left margin does not
necessarily have to be smaller than the right margin, and likewise for top and
bottom.

The Axes... command takes four numeric arguments, the left, right, bottom,
and top values for the coordinate system enclosed by the inner viewport. This
means that after clicking OK in the dialog shown in cf. Figure 2.11, the lower
left-hand corner of the inner viewport is the point of origin of a coordinate
system spanning to the upper right-hand corner of the inner viewport, which
has the position (1, 1).

This can easily be illustrated by executing the following commands, which
results in Figure 2.12:8

8It would be tedious to explain every drawing command’s arguments from here on, so

59

Table 2.1: Color commands and their colors
Command Color (Linux) Color (Windows)
Black

White

Red

Green

Blue

Yellow

Cyan

Magenta

Maroon

Lime

Navy

Teal

Purple

Olive

Silver

Grey

Figure 2.11: Axes... dialog

Marks bottom every ... 1 0.1 yes yes yes

Marks left every ... 1 0.1 yes yes yes

Draw inner box

Now, a few simple drawing commands could be to paint a blue circle with a
diameter of 0.2 right into the center of the viewport, then print the text “Earth”
in 18pt Courier in the lower right-hand corner and draw an arrow from the text
to the circle:

Paint circle ... Blue 0.5 0.5 0.1

18

Courier

Text ... 0.25 Centre 0.25 Half Earth

Draw arrow ... 0.3 0.3 0.4 0.4

This enriches the Picture Window to look like this:
We could just as well select the viewport to have a different aspect ratio and

redefine the axes:

Select outer viewport ... 0 6 0 6

Axes ... -1 1 -1 1

please refer to the Praat program to see what the arguments mean.

60

Figure 2.12: Coordinate system from (0, 0) to (1, 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.13: A few things drawn in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Earth

Marks bottom every ... 1 0.1 yes yes yes

Marks left every ... 1 0.1 yes yes yes

Draw inner box

Paint circle ... Blue 0.5 0.5 0.1

18

Courier

Text ... 0.25 Centre 0.25 Half Earth

Draw arrow ... 0.3 0.3 0.4 0.4

Which results in:
The point of being able to define and redefine the axes at will is that various

datasets can be drawn without having to first scale the values to some fixed
coordinate system.

Note that even though the axes are defined with reference to the inner view-
port, things can still be drawn outside of the inner viewport, but tend to look
messy.

So now we know everything we need to put the Picture Window to good
use!

61

Figure 2.14: Same as Figure 2.13, but with a different scale

–1–0.9–0.8–0.7–0.6–0.5–0.4–0.3–0.2–0.1 0 0.10.20.30.40.50.60.70.80.9 1
–1

–0.9

–0.8

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Earth

2.7.3 Data analysis with the Picture Window

Where Praat’s analysis commands don’t offer what we want, we can easily make
our own.

As an example, we will have Praat draw a histogram with the duration of
each interval on the first tier (“Word”) of festintro.TextGrid (cf. Section 3.1).

Listing 2.4: Duration histogram of festintro.TextGrid
open TextGrid file (modify as appropriate)

Read from file ... festintro.TextGrid

read interval durations into array

numIntervals = Get number of intervals ... 1

for i to numIntervals

start = Get starting point ... 1 i

end = Get end point ... 1 i

interval_ 'i'_Duration = end - start

endfor

Remove

for the vertical dimension , we need to know the maximal duration

maxDuration = 0

for i to numIntervals

if interval_ 'i'_Duration > maxDuration

maxDuration = interval_ 'i'_Duration
endif

endfor

Axes ... 0 numIntervals 0 maxDuration

for i to numIntervals

x_left = i - 1

x_right = i

y_bottom = 0

y_top = interval_ 'i'_Duration
Paint rectangle ... Red x_left x_right y_bottom y_top

to make it look nice , draw an outlined rectangle over that

Draw rectangle ... x_left x_right y_bottom y_top

62

endfor

garnish

Draw line ... 0 0 0 maxDuration

Marks left every ... 1 0.1 yes yes no

Text left ... yes Duration (sec)

Text bottom ... no Intervals

This produces the following Picture Window contents:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ur

at
io

n
(s

ec
)

Intervals

63

Chapter 3

Scripting Techniques

3.1 TextGrid processing

A TextGrid is Praat’s standard format for labeling Sounds. Apart from the
obvious benefit of being able to segment speech into segments, this allows us
to analyse portions of longer Sounds without having to extract these portions
first.1 The approach is always the same: Use the TextGrid to mark boundaries
(or points in time), then select the actual data (Sound, Pitch, or whatever) and
perform analysis on the Intervals or Points marked in the TextGrid.

A TextGrid consist of one or more tiers. Each tier is either an IntervalTier,
which marks spans of time (“intervals”), or TextTier, which marks points in time
(“points”). Intervals and points can have labels attached to them. The process
of marking intervals and/or points and attaching labels to them is known as
labelling.

There are several possible scripting approaches to use time information
stored in a TextGrid for analysis of other objects. For illustrative purposes, we
will attempt to analyse a single recording of synthesized speech.2 The spoken
text is the utterance

This is a short introduction to the Festival Speech Synthesis System.
Festival was developed by Alan Black and Paul Taylor, at the Centre
for Speech Technology Research, University of Edinburgh.

In this Section, we will measure the mean pitch during each word of the
recording. Starting point is that we have loaded both the Sound (festintro.wav)
and the TextGrid (festintro.TextGrid) into Praat and selected both. To avoid
octave jumps, the pitch ceiling will be lowered to 300Hz, but all other settings
remain at their defaults.

1This is especially useful where the extraction itself would change data, or where analysis
is not possible, e.g. at the extraction edges.

2The data we will use here is the result of the (intro) command in Festival 1.95:beta,
using the cstr us awb arctic multisyn voice. Festival and the voice data are available at
festvox.org. The synthesized word boundaries were converted automatically to Praat TextGrid
format using in-house scripts.

64

http://festvox.org/packed/festival/1.95/

Figure 3.1: Festival Intro

Manual analysis

The easiest, and most time-consuming, approach to measure the mean pitch
for each word of the TextGrid is to click the Edit button and use the TextGrid
Editor. For this, we would simply click into each non-empty interval on the
TextGrid’s first (and only) tier, and use the Get pitch command from the Pitch
menu. However, as outlined in Section 2.6.1, we initially have to make sure that
the Show pitch command is checked. We also have to make sure that the “Longest
analysis” setting is larger than the longest interval to be measured and zoom in
until the pitch contour is visible.

For every measurement, we must note the result down and can finally type
up our results. This can be streamlined slightly by using the keyboard shortcuts
Alt+→ (Select next interval) and F5 (Get pitch).

Using the TextGrid Editor

We can mimic the procedure described in the last Section using the following
script:

Listing 3.1: Using the TextGrid Editor
clearinfo

textGridName$ = selected$ (" TextGrid ")
Edit

editor TextGrid 'textGridName$ '

65

setup pitch options

Show analyses ... 0 1 0 0 0 5

Pitch settings ... 75 300 Hertz "Intonation (AC method)" automatic

select first interval

Move cursor to... 0

firstEnd = Get end point of interval

Select ... 0 firstEnd

then , for each interval

repeat

Zoom to selection

label$ = Get label of interval

if label is not empty

if label$ <> ""

pitch = Get pitch

printline 'label$ ''tab$ ''pitch:2' Hz

endif

Select next interval

end = Get end point of interval

until end == firstEnd

Close

endeditor

The repeat loop’s break condition exploits the fact that using the Select next

interval command at the end of a tier will “wrap” back to the first interval on
that tier. Note that this script will fail with an error if an interval is longer
than the “Longest analysis” argument of the Show analyses... command (here,
5 seconds).

Using the Object Window

A much faster and more robust alternative is to use commands from the Object
Window, which makes no use of Editor Windows at all:

Listing 3.2: Using the Object Window
soundID = selected (" Sound ")

textGridID = selected (" TextGrid ")

minus textGridID

quietly create Pitch object

noprogress To Pitch ... 0 75 300

pitchID = selected ()

back to the TextGrid

select textGridID

numIntervals = Get number of intervals ... 1

clearinfo

for each interval

for i to numIntervals

if label is not empty

label$ = Get label of interval ... 1 i

if label$ <> ""

get start and end times

start = Get starting point ... 1 i

end = Get end point ... 1 i

66

get mean between start and end from Pitch

select pitchID

pitch = Get mean ... start end Hertz

back to TextGrid

select textGridID

printline 'label$ ''tab$ ''pitch:2' Hz

endif

endfor

cleanup

select pitchID

Remove

select soundID

plus textGridID

Note that the pitch analysis is done by repeatedly querying a Pitch object
created from the Sound, retrieving the time parameters from the TextGrid.
While this script is much faster than the one in the preceding Section, the
“jumping” back and forth between the Pitch and TextGrid objects is rather
cumbersome. We could instead use an array to store the times:

Listing 3.3: Using the Object Window and arrays
soundID = selected (" Sound ")

textGridID = selected (" TextGrid ")

minus soundID

store intervals in arrays

numIntervals = Get number of intervals ... 1

for i to numIntervals

interval_ 'i'_label$ = Get label of interval ... 1 i

interval_ 'i'_start = Get starting point ... 1 i

interval_ 'i'_end = Get end point ... 1 i

endfor

quietly create Pitch object

select soundID

noprogress To Pitch ... 0 75 300

clearinfo

for each interval

for i to numIntervals

if label is not empty

if interval_ 'i'_label$ <> ""

get mean between start and end

pitch = Get mean ... interval_ 'i'_start interval_ 'i'_end Hertz

label$ = interval_ 'i'_label$
printline 'label$ ''tab$ ''pitch:2' Hz

endif

endfor

cleanup

Remove

select soundID

plus textGridID

67

Direct access via TableOfReal

There is another way to access the interval data without creating arrays from
the TextGrid. We can exploit the fact that if a TableOfReal object is created
from an IntervalTier, that TableOfReal will be a table containing the start and
end times, as well as duration, of each interval:

Table 3.1: TableOfReal of festintro.TextGrid (excerpt)
Start End Duration

0. 0.0984407914312 0.0984407914312
This 0.0984407914312 0.337637603283 0.23919681185180003
is 0.337637603283 0.445062607527 0.10742500424399998
a 0.445062607527 0.497505914081 0.05244330655399998
short 0.497505914081 0.894330280168 0.396824366087
introduction 0.894330280168 1.54408713749 0.6497568573220001

...
...

...
...

An advantage of using this approach is that we can “trim” the TableOfReal

to contain only those intervals we are interested in, based on their label. We
can do this when creating the TableOfReal with Down to TableOfReal..., or use
much more powerful commands such as Extract rows where label... on an exist-
ing TableOfReal.

While we could then query the TableOfReal much in the same way as a
TextGrid, the real advantage is that we can use a special syntax in scripts to
access a TableOfReal directly, without selecting it in the object list!

We can either use the expression TableOfReal_Foo to access the TableOfReal

named “Foo” or, assuming that its ID is e.g. 5, use the more robust expression
Object_5. Table 3.2 gives a quick overview of relevant syntax.3

Table 3.2: Standard Praat commands vs. direct object access (TableOfReal)
Get number of rows Object_'id'.nrow

Get number of columns Object_'id'.ncol

Get row label... r Object_'id'.row$[r]

Get column label... c Object_'id'.col$[c]

Get value... r c Object_'id'[r, c]

r = Get row index... Foo

Get value... r c

Object_'id'["Foo", c]

c = Get column index... Bar

Get value... r c

Object_'id'[r, "Bar"]

r = Get row index... Foo

c = Get column index... Bar

Get value... r c

Object_'id'["Foo", "Bar"]

Using this knowledge, we can write a script that queries the Pitch object,
referring to the TableOfReal for time parameters:

3For the standard commands to work, the TextGrid with ID id must be selected. This is
not required for direct object access.

68

Listing 3.4: Using direct TableOfReal access
soundID = selected (" Sound ")

textGridID = selected (" TextGrid ")

minus soundID

create and trim TableOfReal

Extract tier ... 1

intervalTierID = selected ()

Down to TableOfReal (any)

tableOfReal1ID = selected ()

Extract rows where label ... "is not equal to" 4

tableOfReal2ID = selected ()

quietly create Pitch object

select soundID

noprogress To Pitch ... 0 75 300

clearinfo

for each interval (i.e. TableOfReal row)

for i to Object_ 'tableOfReal2ID '.nrow

get mean between start and end

start = Object_ 'tableOfReal2ID '[i, "Start "]

end = Object_ 'tableOfReal2ID '[i, "End"]

pitch = Get mean ... start end Hertz

label$ = Object_ 'tableOfReal2ID '.row$[i]
printline 'label$ ''tab$ ''pitch:2' Hz

endfor

cleanup

plus tableOfReal2ID

plus tableOfReal1ID

plus intervalTierID

Remove

select soundID

plus textGridID

All of these scripts yield the same results:5

Figure 3.2: Pitch analysis script output

4Note the space at the end of this line! It means that the second command argument is
the empty string.

5Using the Sound/TextGrid Editor for pitch analysis may produce slightly different mea-
surements, since the default pitch settings can differ from when a Pitch object is created from
a Sound. Also, the visible portion of the Pitch contour influences the measurements.

69

3.2 Batch processing

As we glimpsed in Chapter 0, it is possible to have Praat list all files in a direc-
tory, e.g. to perform an analysis on each one, etc. The key to such batch process-
ing of many files in one script is the Praat command Create Strings as file list...

in the New menu of the Object Window.
This command creates an Object of the Strings class, which contains all files

in a given directory. It is possible to mask certain files, including only those in the
Strings which match a certain condition. For instance, the masking expression
*.wav will include only those filenames ending with .wav,6 while the expression
a* will match all filenames beginning with an a. The * is referred to as a wildcard
character and stands for “0 or more characters”. Another wildcard character is
?, which stands for “any one character”.

The Strings object

An object of class Strings is conceptually quite similar to an array of strings,
or to true arrays in other programming languages. It is simply a number of
strings of characters that can be addressed as a single object. Unlike a string
array, its lifespan is not restricted to the runtime of a script, but it exists in the
Object Window and it can be written to, or read from, a file. There are many
useful commands available for Strings objects, the most common of which are
Get number of strings, which speaks for itself, and Get string..., which takes a
single numeric argument n and returns the nth string in the Strings object.

Other useful commands for Strings objects are Sort, Randomize, and Genericize7,
all of which modify the stored strings in place (i.e. without creating a copy of the
object first). It is possible to manipulate individual strings with the Set String...

command, and replacement operations (allowing the use of regular expressions)
can be performed with the Change... command. Finally, a new Strings object
containing a contiguous subset of the strings stored in a Strings object can be
created with the Extract part... command.

It is even possible to create a Strings object from a text file, with one string
per line, using the Read Strings from raw text file... command from the Read
menu. This is another way to read text files into Praat; the following two scripts
are practically equivalent, except that the Strings object is persistent in the
object list:

Listing 3.5: Read a text file into an array
text$ < file.txt

lines_num = 0

repeat

lines_num += 1

line_ 'lines_num '$ = extractLine$(text$, "") + newline$
text$ = replace$(text$, line_ 'lines_num '$, "", 1)

until text$ == ""

Listing 3.6: Read a text file into a Strings
Read Strings from raw text file ... file.txt

6Typically audio samples in PCM format with a RIFF header.
7This changes special characters into a 7-bit representation.

70

optionally

lines_num = Get number of strings

for l to lines_num

line_ 'l' = Get string ... l

endfor

One disadvantage a Strings object has over an array of strings is that it
cannot be created from scratch, and there is no straightforward way to add
strings to such an object. On the other hand, it is comparatively trivial to view
the actual strings stored in a Strings object, using the Inspect command below
the object list, while array elements must be printed or otherwise explicitly
output, using loops and placeholder variables.

3.2.1 Single directory processing

As mentioned above, to access a list of all files in a given directory (or only those
matching a certain wildcard expression), we use the command Create Strings as

file list.... This takes two arguments; the first is the name of the resulting
Strings object, and the second is the path (and filename mask) of the directory
to be listed. This can be an absolute or relative path.

Listing 3.7: List directory contents
form List directory contents

sentence Directory

endform

echo 'directory$ ':
Create Strings as file list ... fileList 'directory$ '
numFiles = Get number of strings

for f to numFiles

file$ = Get string ... f

printline 'file$ '
endfor

Of course, we want to do something with these files; e.g. reading all wav files
into the object list as Sound objects is a common task:

Listing 3.8: Read all wav files in specified directory
form Read all sounds in directory

sentence Directory

endform

Create Strings as file list ... wavList 'directory$ '/*. wav
numSounds = Get number of strings

for s to numSounds

sound$ = Get string ... s

Read from file ... 'directory$ '/'sound$ '
select Strings wavList

endfor

Remove

Note two common pitfalls here: First, if the script is not in the directory$

directory, the files to be read must be preceded with the proper path, i.e.
directory$. And second, if the Strings containing the file list is not selected when
the Get string... command is used in the for loop, the script will fail.

Of course, nothing prevents us from read the contents of Strings file list into
an array, then loading the files in a second loop:

71

Listing 3.9: Read all wav files in specified directory using an array
form Read all sounds in directory

sentence Directory

endform

Create Strings as file list ... wavList 'directory$ '/*. wav
numSounds = Get number of strings

for s to numSounds

sound_ 's'$ = Get string ... s

endfor

Remove

for s to numSounds

sound$ = sound_ 's'$
Read from file ... 'directory$ '/'sound$ '

endfor

3.2.2 Subdirectory processing

The Create Strings as file list... command ignores directory entries that are
not files. This means that not only are files in subdirectories of the specified
directory not processed, we don’t even find these subdirectories in the list.

For this purpose, there is a different command, Create Strings as directory

list.... It works analogously to Create Strings as file list..., but lists only
subdirectories, and no files. Therefore, given a directory which contains a number
of subdirectories, each of which in turn contains a number of files, we can nest a
Create Strings as file list... loop in a Create Strings as directory list... loop,
loading every files in every subdirectory:

Listing 3.10: Read all wav files in specified directory’s subdirectories
form Read all sounds in directory 's subdirectories

sentence Directory

endform

Create Strings as directory list ... subDirList 'directory$ '
numSubDirs = Get number of strings

for d to numSubDirs

subDir$ = Get string ... d

Create Strings as file list ... wavList 'directory$ '/'subDir$ '/*. wav
numSounds = Get number of strings

for s to numSounds

sound$ = Get string ... s

Read from file ... 'directory$ '/'subDir$ '/'sound$ '
select Strings wavList

endfor

Remove

select Strings subDirList

endfor

Remove

Dot files and directories

There is a caveat when using these commands to process files and directories:
Depending on the operating system under which Praat is run, files and direc-
tories whose name begins with a . (these are sometimes called dot files or dot
directories) may or may not be included in the list. This has two consequences:

72

1. Under Linux, dot files and directories will be hidden and cannot be ac-
cessed with Create Strings as file list... and Create Strings as directory

list..., respectively. However, one possible workaround is to use a bash
script to create a directory listing as a text file, then read this file as a
Strings object and proceed normally:

Listing 3.11: Similar to Listing 3.7, but reads even dot files
include createStringsAsFileList.praat

form List directory contents

sentence Directory

endform

echo 'directory$ ':
procedure call instead of Create Strings as file list ...

call createStringsAsFileList fileList 'directory$ '
numFiles = Get number of strings

for f to numFiles

file$ = Get string ... f

printline 'file$ '
endfor

Listing 3.12: Procedure with embedded bash script
procedure createStringsAsFileList .stringsName$.path$

make sure .path$ ends with "/"

if not endsWith (.path$, "/")

.path$ = .path$ + "/"

endif

system call with embedded bash script ...

system

... for f in $(ls -AU '.path$ ');

... do

... if [-f '.path$ '$f];8

... then

... echo $f;

... fi;

... done

... > '.stringsName$ '
... which only works under Linux , of course

Read Strings from raw text file ... '.stringsName$ '
filedelete '.stringsName$ '

endproc� �
$ praat listFiles.praat bla
bla:
foo
bar
baz
$ praat listAllFiles.praat bla
bla:
foo
bar
baz
.hidden
.invisible� �

8To modify this procedure to list directories instead of files, change the -f to -d.

73

2. Under Windows, dot files and directories are shown and processed nor-
mally. However, this also means that every directory will contain two
“special” directory entries, . (the directory itself) and .. (the parent direc-
tory). These are part of the file system, but can cause problems in Praat
scripts if they are treated as normal directories, since Create Strings as

directory list... will include them as extra strings. It is fairly trivial to
exclude them from being processed, however, by wrapping relevant lines
in a condition (cf. Listing 3.13).

3.2.3 Recursive subdirectory processing

As illustrated in Section 3.2.2, processing subdirectories can quickly become
rather awkward and even problematic, when the depth of the directory tree
is not hard-coded into the script (or cannot be, because it is not known). The
solution to processing trees of arbitrary depth is to use recursion, which in Praat
can be accomplished using a procedure that calls itself :

Listing 3.13: Process each subdirectory recursively
" initialize " array of directory names

num_Dirs = 0

root of directory tree

basepath$ = "foo"

preparations

depth = 0

call openDir 'basepath$ '

procedure openDir .dir$
.listName$ is the name of each Strings , purely cosmetic

.listName$ = "dirList"

.dir_ 'depth '$ = .dir$
operation to be performed on every directory in the

tree goes here , e.g.

call listDir '.dir$ '
or just append to an array of directory names for

later processing :

num_Dirs += 1

directory_ 'num_Dirs '$ = .dir$
create Strings of subdirectories

Create Strings as directory list ... '.listName$ ' '.dir$ '
.numDirs_ 'depth ' = Get number of strings

for loop is skipped if no subdirectories in this .dir$
for .dir_ 'depth ' to .numDirs_ 'depth '

.nextDir$ = Get stringdir_ 'depth '
under Windows , exclude "." and ".." entries

if .nextDir$ <> "." and .nextDir$ <> ".."

depth += 1

recursive procedure call

call openDir '.dir$ '/'.nextDir$ '
depth -= 1

endif

reset .dir$, because recursive call has overwritten it

.dir$ = .dir_ 'depth '$
select Strings '.listName$ '

endfor

Remove

endproc

74

procedure listDir .dir$
for d to depth

print

endfor

print '.dir$ ':'newline$ '
Create Strings as file list ... fileList '.dir$ '
.numFiles = Get number of strings

for .file to .numFiles

.file$ = Get stringfile

for d to depth

print

endfor

print '.file$ ''newline$ '
select Strings fileList

endfor

Remove

endproc

Since subdirectories with no subdirectories of their own are removed at the
end pf the openDir procedure, the last Strings object in the object list is always
the “current” directory being processed (i.e. the current node in the tree).9

Note that in spite of the use of local variables, certain variables required for
backtracking would be overwritten, which necessitates use of an array indexed by
the depth counter (which represents the number of nodes in the tree dominating
the current node).

9This exploits Praat’s behavior of selecting the last candidate object in cases of ambiguity,
such as when selecting by object name, as done here.

75

Chapter 4

Sound Editing

Several possibilities exist in Praat to create, filter, and otherwise manipulate
Sounds, with special emphasis on speech. A few of the more common techniques
will be discussed in this Section. While some of them can be used by hand (with
Editors and Praat commands), others require certain amounts of scripting to
achieve.

4.1 Editing with the Sound Editor

If you are familiar with “normal” sound editing software (such as Adobe Au-
dition (formerly CoolEdit), Sound Forge, Audacity1, etc.), you will not be sur-
prised to find a few common commands in Praat’s Sound Editor.

4.1.1 Sound clipboard

In the Sound Editor (not the TextGrid Editor2), we can perform a number of
very basic manipulations on the Sound itself. Most of these involve the Sound
clipboard, which stores a portion of a Sound and whose contents can be easily in-
serted into a Sound. To place a portion of a Sound in the Sound clipboard, select
the appropriate part of the Sound in the Sound Editor and use the command
Copy selection to Sound clipboard from the Edit menu. You can also simultane-
ously remove this selection from the Sound by using the Cut command instead.

To insert the contents of the Sound clipboard into the Sound displayed in
the Sound Editor (which need not be the Sound it was originally taken from),
use the Paste after selection command. If there currently is no selection, it will
be pasted at the cursor position. This will not empty the Sound clipboard, so
the insertion can be performed repeatedly.

Note that the Sound clipboard can only hold one contiguous Sound extrac-
tion. Any copying to the Sound clipboard will overwrite its previous contents (if

1audacity.sourceforge.net
2If we want to select intervals by clicking on them like in the TextGrid Editor, we can open

a TextGrid Editor on the TextGrid in addition to the Sound in the Sound Editor. Then, if we
make sure that the Group boxes in the lower right-hand corner of both editors are checked,
we have synchronized scrolling, zoom level and selection between the two editors. By selecting
an interval in the TextGrid Editor, we simultaneously select the corresponding range in the
Sound Editor, which we can then copy to the Sound clipboard, etc.

76

http://audacity.sourceforge.net/

any). Also note that the sampling frequency of the Sound clipboard’s contents
must match that of the Sound to be pasted into.

4.1.2 Other editing commands

The Sound Editor contains only two other commands for modifying the dis-
played Sound, and both are applicable only to a selection in the Sound:

� Set selection to zero will silence the current Sound selection;

� Reverse selection will modify the selection so that it will be played back-
wards.

Additionally, the Undo command can be used to restore the Sound to the
state before the last editing command.

By the way, instead of copying a selection to the Sound clipboard which can
hold only a single selection at once, we can alternatively extract the selection
to the Object Window as a new Sound with the appropriate Extract selection

command in the File menu of the Editors,3 which brings us to the next Section.

4.2 Editing with the Object Window

Of course, for scripting purposes, it is preferable to perform such operations
in the Object Window directly, which can be done with commands such as
Extract part... (found in the Convert submenu) and Concatenate (in the Combine
sounds submenu). A part of a Sound can also be silenced with the Set part to

zero... command, and an entire Sound (not just a part, unfortunately) can be
reversed with the Reverse command (both are found in the Modify submenu).

4.2.1 Extracting parts of Sounds

To extract part of a Sound as a new Sound, we use the Extract part... command
mentioned above. It is essentially identical to the Extract windowed selection...

command in the Sound Editor in that it allows us to specify how the extracted
part should be windowed (“faded” in and out) at the edges. The point is to
avoid “jumps” in the signal when two extractions are concatenated and do not
join well. If they both join at zero, artifacts will be minimized. To disable such
windowing, use Rectangular as the window type parameter.

A useful feature of Praat is the possibility of extracting intervals from a
specified interval tier in a TextGrid as Sounds, provided both the TextGrid and
corresponding Sound are selected in the object list. Each extraction begins and
ends at the corresponding interval’s boundaries. For additional transparency,
these new Sounds will be named according to the interval’s label (subject to the
usual Object naming restrictions). The command to do this for all intervals in-
discriminately is Extract all intervals..., while empty (i.e. unlabeled) intervals
can be ignored using Extract non-empty intervals.... Precise control over which
intervals should be extracted can be exerted with the Extract intervals where...

command, which allows even regular expressions.
3This works in the TextGrid Editor, too!

77

4.2.2 Concatenating Sounds

If more than one Sound is selected in the object list, we can use the Concatenate

command to combine them into one long Sound. The selection may of course be
discontinuous (i.e. the Sounds do not have to be adjacent in the list), but they
will be concatenated in the exact order in which they appear in the list. This
means that to reorder Sounds differently than in the object list, some extensive
use of the Copy... command may be in order. It is therefore recommended to
bear this behavior in mind when extracting or creating Sounds, so that they
are placed in the object list in the order in which they are to be concatenated
finally.

An additional feature is Praat’s ability to create a TextGrid along with
the concatenated Sound, so that the original Sounds start and end times are
preserved as interval boundaries. Furthermore, the Sound objects’ names are the
labels of these intervals. This is done with the Concatenate recoverably command.

4.2.3 Examples

Before we look at some example scripts which edit a file called 123.wav, we will
create a TextGrid for this Sound using automatic segmentation.

Autosegmenting with Praat

Using the Sound Editor, we will edit a short recording consisting of the words,
“one”, “two”, and “three.” To make things more easier, we will first create a
TextGrid containing a lexical transcription.

A recent addition to Praat’s features (stable since version 4.5.02) is the To

TextGrid (silences)... command. It attempts to automatically create a TextGrid
for a Sound, with boundaries at silent/non-silent transitions, based on the
Sound’s intensity contour.

Figure 4.1: Sound 123’s waveform

Time (s)
0 4.30807

–0.4572

0.4236

0

Figure 4.2: Sound 123’s intensity con-
tour

Time (s)
0 4.30807

40.24

79.94

In
te

ns
ity

 (d
B)

Using the To TextGrid (silences)... command with default values (except for
the labels), and subsequent labeling of the words by hand produces a well-
segmented TextGrid (Figure 4.4).

78

Figure 4.3: To TextGrid (Silences)... dialog

Figure 4.4: Sound and TextGrid 123

0.4236

0

–0.4572

sil one sil two sil three sil

Time (s)
0 4.30807

Editing with a Sound Editor script

For this example, we want to load and edit Sound 123 in such a way that all in-
tervals labeled sil are silenced (eliminating recording noise), and the non-empty
intervals are reordered, so that the utterance “three, two, one” is synthesized.

The first part, silencing the sil-labeled intervals, is given as Listing 4.1:

Listing 4.1: Editor script example
store selection

soundID = selected (" Sound ")

soundName$ = selected$ (" Sound ")
tgID = selected (" TextGrid ")

tgName$ = selected$ (" TextGrid ")

79

open editor windows

select soundID

Edit

select tgID

Edit

get end time of TextGrid

xmax = Get end time

editor TextGrid 'tgName$ '
Move cursor to... xmax

zero "sil" intervals

repeat

Select next interval

end = Get end point of interval

label$ = Get label of interval

if label$ == "sil"

endeditor

editor Sound 'soundName$ '
Set selection to zero

endeditor

editor TextGrid 'tgName$ '
endif

until end == xmax

reorder non -" sil" intervals

HERE BE DRAGONS!

cleanup

Close

endeditor

editor Sound 'soundName$ '
Close

endeditor

plus soundID

For the second task, reordering the non-sil intervals, the most intuitive ap-
proach, using the Sound and TextGrid Editors, is, ironically, also the most
harrowingly complex procedure, if only commands available from the Editor
windows are to be used... Feel free to try it out by hand, but stay away from
trying to write an editor script for this operation.4

Editing with the Object Window (Part 1)

For scripting purposes, it is much easier to use the Object Window. The first
script we will study uses extraction commands, reorders by copying and finally
concatenates.

Listing 4.2: Object Window script example 1
store selection

soundID = selected (" Sound ")

tgID = selected (" TextGrid ")

extract intervals as sounds and store IDs in two arrays

Extract all intervals ... 1 0

4The various problems in creating such a script involve writing code to remove text from
an interval, shifting all boundaries after it to the left, then shifting boundaries after the target
position to the right (keeping the labels in the appropriate intervals!), and finally inserting
the label text again. Repeat twice for every two intervals you want to switch...

80

num_sil = 0

num_non_sil = 0

for s to numberOfSelected ()

if selected$ (" Sound", s) == "sil"

num_sil += 1

sil_ 'num_sil 'ID = selected(s)

else

num_non_sil += 1

non_sil_ 'num_non_sil 'ID = selected(s)

endif

endfor

copy in final order (" sil"s in order , non -" sil"s in reverse order)

select sil_1ID

Copy ... sil

firstSoundID = selected ()

s = 2

n = num_non_sil

while s <= num_sil and n > 0

select non_sil_ 'n'ID
name$ = selected$ (" Sound ")
Copy ... 'name$ '
n -= 1

select sil_ 's'ID
Copy ... sil

s += 1

endwhile

lastSoundID = selected ()

select and concatenate

select firstSoundID

for s from firstSoundID + 1 to lastSoundID

plus s

endfor

Concatenate recoverably

finalSoundID = selected ("Sound")

finalTgID = selected (" TextGrid ")

cleanup

select sil_1ID

for s from 2 to num_sil

plus sil_ 's'ID
endfor

for s to num_non_sil

plus non_sil_ 's'ID
endfor

for s from firstSoundID to lastSoundID

plus s

endfor

Remove

select finalSoundID

plus finalTgID

The result of this script is shown in Figure 4.5.

Editing with the Object Window (Part 2)

Using a slightly different approach, we can accomplish the same goal more ele-
gantly, storing the intervals in a TextGrid (whose rows are then rearranged as
desired) and easily iterating over it to extract parts from the Sound in the final
order.

81

Figure 4.5: Sound and TextGrid 123 after zeroing all sil intervals and reversing
the order of the others (compare to Figure 4.4)

0.4236

0

–0.4572

sil three sil two sil one sil

Time (s)
0 4.30807

Listing 4.3: Object Window script example 2
store selection

soundID = selected (" Sound ")

tgID = selected (" TextGrid ")

create TableOfReal from TextGrid

select tgID

Extract tier ... 1

itID = selected ()

Down to TableOfReal (any)

torID = selected ()

extract non -" sil" intervals

Extract rows where label ... "is not equal to" sil

tor_non_silID = selected ()

copy non -" sil" rows back into full TableOfReal , in reverse

select torID

for row to Object_ 'tor_non_silID '.nrow
new_row = Object_ 'torID '.nrow - row * 2 + 1

label$ = Object_ 'tor_non_silID '.row$[row]
Set row label (index)... new_row 'label$ '
for col to Object_ 'torID '.ncol

value = Object_ 'tor_non_silID '[row , col]

Set value ... new_row col value

endfor

endfor

extract parts from Sound

for r to Object_ 'torID '.nrow
select soundID

start = Object_ 'torID '[r, "Start "]

end = Object_ 'torID '[r, "End"]

Extract part ... start end Rectangular 1 0

sound_ 'r'ID = selected ()

82

endfor

select and concatenate

for s to Object_ 'torID '.nrow - 1

plus sound_ 's'ID
endfor

Concatenate recoverably

finalSoundID = selected ("Sound")

finalTgID = selected (" TextGrid ")

restore labels from TextGrid

select finalTgID

for i to Object_ 'torID '.nrow
label$ = Object_ 'torID '.row$[i]
Set interval text ... 1 i 'label$ '

endfor

cleanup

select itID

plus torID

plus tor_non_silID

for s to Object_ 'torID '.nrow
plus sound_ 's'ID

endfor

Remove

select finalSoundID

plus finalTgID

Note that this script does not suffer from a certain shortcoming of Listing 4.2,
namely that all characters in the original TextGrid’s labels which not allowed
for object names (i.e. everything except letters, digits, and underscores) will be
replaced by underscores, since the final TextGrid’s labels are derived from the
concatenated Sounds’ object names. In Listing 4.3, the labels are stored as row
labels in the TextGrid and reinserted after concatenation.

4.3 Duration manipulation

The easiest way to change the duration of a Sound is to have it play more quickly
or more slowly. This is easily accomplished by telling Praat to play the Sound in
such a way that more or less samples of the Sound are played per second; for this,
we can use the Override sampling frequency... command. E.g. to play a Sound at
twice its normal speed (halving its duration), we simply pass twice that Sound’s
sampling frequency as the parameter of the Override sampling frequency... com-
mand.

An obvious side-effect of this technique is that the pitch is modified in corre-
spondence to the shift in duration, i.e. a Sound with a pitch of 500 Hz sampled
at 16 kHz will have its pitch lowered to 250 Hz if it is slowed down by halving
its sampling frequency by 800 Hz.

4.3.1 PSOLA

Praat’s specialty is speech, and so there are relatively sophisticated features
available for manipulating speech Sounds. This includes modifying the duration
of Sounds without changing the pitch (and vice versa) using an algorithm known

83

as PSOLA (Pitch Synchronous OverLap Add). The details of this algorithm will
not be discussed here, but it works rather well within certain bounds.

The easiest way to use PSOLA for duration manipulation is the Lengthen

(PSOLA)... command. The Factor parameter determines the resulting duration,
relative to the original.

Note that if an annotated Sound is lengthened (or shortened) in this way,
the corresponding TextGrid will no longer match. Fortunately, we can apply
uniform scaling so that the TextGrid matches the modified Sound. We simply
select both the Sound and the TextGrid and apply the command Scale times.

4.3.2 The Manipulation object

To create a Manipulation object, use the To Manipulation... command on a Sound
object. The resulting Manipulation object can be modified with the powerful
Manipulation Editor (Figure 4.6). The top panel of this editor displays the
waveform (with pulses) and is similar to the Sound Editor. The middle panel
displays the pitch tier and the bottom panel, the duration tier. In this section,
we will focus on the duration tier.

Figure 4.6: Manipulation Editor window

In a newly created Manipulation object, the duration tier will be empty.
Adding points will define a duration contour, and this in turn will modify the
Sound’s local duration. For example, adding one point with a value of 1 at the
beginning of a Sound, another one with a value of 1.5 in the middle, and a third
point with a value of 1 at the end will result in a modified Sound that becomes
increasingly longer (i.e. slower), up a maximal slowdown of 50% in the middle,
and then speeds up again to normal speed at the end. Halfway between the
beginning and the middle of the Sound, the duration contour will have a value

84

of 1.25 (even though there is no duration point there), which means that this
part of the Sound will be 25% slower than normal.

4.3.3 Selective interval equalization

To have only portions of the Sound at different relative durations, and those
evenly lengthened/shortened, we need a duration “contour” that is essentially a
series of rectangles. The problem is that it is not possible to have two duration
points above one another at the same time (as would be required for a perfect
rectangle). We can approximate this, however, by creating two duration points
that are only e.g. 0.00000000015 seconds apart, which is just as good for practical
purposes.6

For example, to modify a Sound so that all non-sil intervals are equally long,
we could use the following script, which generates the duration tier shown in
Figure 4.7 and inserts it into the Manipulation. It then resynthesizes the Sound,
which results in Figure 4.9.

Figure 4.7: Duration tier used to make 123’s non-sil intervals equally long

0

1.5

0 4.30807
Time (s)

Listing 4.4: Make non-sil intervals equally long (mean)
store selection

soundID = selected (" Sound ")

tgID = selected (" TextGrid ")

create TableOfReal from TextGrid

select tgID

Extract tier ... 1

itID = selected ()

Down to TableOfReal (any)

torID = selected ()

Extract rows where label ... "is not equal to" sil

tor_non_silID = selected ()

get mean non -" sil" interval duration

mean = Get column mean (label)... Duration

create Manipulation from Sound

select soundID

5Remember: this can be represented as 1× 10−10 and written in Praat as 1e-10.
6Keep in mind that at a sampling frequency of 44.1 kHz, two adjacent samples are 1

44100
≈

0.0000226757 seconds apart, which is much longer than the “slope” of such a near-rectangle!

85

To Manipulation ... 0.01 75 600

manID = selected ()

include equalizeDurationsEditor.praat

call equalizeDurationsEditor tor_non_silID mean

make new TextGrid

newSoundID = selected ()

To TextGrid ... labels

newTgID = selected ()

end = Get start time

for i to Object_ 'torID '.nrow
label$ = Object_ 'torID '.row$[i]
Set interval text ... 1 i 'label$ '
if i < Object_ 'torID '.nrow

if Object_ 'torID '.row$[i] == "sil"

end += Object_ 'torID '[i, "Duration "]

else

end += mean

endif

Insert boundary ... 1 end

endif

endfor

cleanup

select itID

plus torID

plus tor_non_silID

plus manID

Remove

select newSoundID

plus newTgID

Listing 4.5: Procedure for actual duration manipulation using the Manipulation
Editor
procedure equalizeDurationsEditor .tableOfRealID .targetDuration

.manName$ = selected$ (" Manipulation ")
Edit

editor Manipulation '.manName$ '
for .i to Object_ '. tableOfRealID '.nrow

.duration = .targetDuration / Object_ '. tableOfRealID '[.i, "Duration "]

.start = Object_ '. tableOfRealID '[.i, "Start "]

Add duration point at... .start 1

.start += 1e-10

Add duration point at... .start .duration

.end = Object_ '. tableOfRealID '[.i, "End"]

Add duration point at... .end 1

.end -= 1e-10

Add duration point at... .end .duration

endfor

Publish resynthesis

Close

endeditor

endproc

86

Figure 4.8: Sound and TextGrid 123 before running Listing 4.4

0.4236

0

–0.4572

sil one sil two sil three sil

Time (s)
0 4.30807

Figure 4.9: Sound and TextGrid 123 after making the non-empty interval
equally long

0.4237

0

–0.4572

sil one sil two sil three sil

Time (s)
0 4.30807

87

The actual manipulation (i.e. performing operations on the Manipulation
object) is accomplished through the procedure in Listing 4.5. As usual, this can
also be done using only commands from the Object Window:

Listing 4.6: Procedure for actual duration manipulation without using the Ma-
nipulation Editor
procedure equalizeDurations .tableOfRealID .targetDuration

Extract duration tier

dtID = selected ()

for .i to Object_ '. tableOfRealID '.nrow
.duration = .targetDuration / Object_ '. tableOfRealID '[.i, "Duration "]

.start = Object_ '. tableOfRealID '[.i, "Start "]

Add pointstart 1

.start += 1e-10

Add pointstart .duration

.end = Object_ '. tableOfRealID '[.i, "End"]

Add pointend 1

.end -= 1e-10

Add pointend .duration

endfor

plus manID

Replace duration tier

minus dtID

Get resynthesis (PSOLA)

endproc

Note that the TextGrid is rebuilt because there is no straightforward way
of time-shifting only some intervals of a TextGrid, keeping the other interval
durations unchanged.

4.3.4 Selective interval equalization without Manipulation
object

A possible alternative approach that does not make use of the Manipulation Ed-
itor is to use Extract all intervals..., then Lengthen (PSOLA)... (with varying fac-
tors) on only some of the extracted Sounds, and finally Concatenate recoverably:7

Listing 4.7: Make non-sil intervals equally long (mean) without a Manipulation
store selection

soundID = selected (" Sound ")

tgID = selected (" TextGrid ")

create TableOfReal from TextGrid

select tgID

Extract tier ... 1

itID = selected ()

Down to TableOfReal (any)

torID = selected ()

Extract rows where label ... "is not equal to" sil

tor_non_silID = selected ()

get mean non -" sil" interval duration

mean = Get column mean (label)... Duration

7Because the pitch extraction precalculations required for PSOLA are only performed on
those parts of the original Sound that are actually lengthened, as opposed to the entire Sound,
which is done when a Manipulation object is created, this approach is actually slightly faster
than those that make use of the Manipulation.

88

extract intervals

select soundID

plus tgID

Extract all intervals ... 1 0

for s to numberOfSelected (" Sound ")

extractedSound_ 's'ID = selected(s)

endfor

copy or lengthen depending on label/name

for s to Object_ 'torID '.nrow
select extractedSound_ 's'ID
soundName$ = selected$ (" Sound ")
if soundName$ == "sil"

Copy ... 'soundName$ '
newSound_ 's'ID = selected ()

else

factor = mean / Sound_ 'soundName$ '.xmax
noprogress Lengthen (PSOLA)... 75 600 factor

Rename ... 'soundName$ '
newSound_ 's'ID = selected ()

endif

endfor

concatenate

select newSound_1ID

for s from 2 to Object_ 'torID '.nrow
plus newSound_ 's'ID

endfor

Concatenate recoverably

finalSoundID = selected ("Sound")

finalTgID = selected (" TextGrid ")

cleanup

select itID

plus torID

plus tor_non_silID

for s to Object_ 'torID '.nrow
plus extractedSound_ 's'ID
plus newSound_ 's'ID

endfor

pause

Remove

select finalSoundID

plus finalTgID

4.4 Pitch manipulation

The PSOLA algorithm can of course also be used to change the pitch of a Sound
while keeping the duration constant. This can easily be achieved in Praat with
the command Change gender... in the Convert submenu. The command’s dialog
is shown in Figure 4.10.

Corresponding to the command’s modification parameters, the formants can
be shifted, the median pitch changed, the pitch range expanded or contracted
and, as a “bonus”, the duration modified (as with the Lengthen (PSOLA)... com-
mand; all of these parameters can be changed independently.

89

Figure 4.10: Change gender... dialog

4.4.1 Pitch manipulation with the Manipulation object

Of course, as foreshadowed in Section 4.3.2, precise control over the pitch ma-
nipulation can be achieved using a Manipulation object. For this, the procedure
is essentially the same as with manipulation of duration, including the choice
between using the Manipulation Editor or the Object window’s commands. In
the latter case, we either extract the pitch tier from the Manipulation object or
create a new one from scratch. After modifying the resulting PitchTier object
as desired (again, using either the PitchTier Editor or commands available from
the Object Window), we select it together with the Manipulation object and
run the Replace pitch tier command, before using the Get resynthesis (PSOLA) or
Get resynthesis (LPC) command to render the manipulated Sound.

The resulting manipulated Sound will have a pitch contour almost exactly
along the points defined in the pitch tier of the Manipulation, but only in areas
where the signal has pitch (i.e. a periodic component in the appropriate fre-
quency range) in the first place. Pitch-less portions such as voiceless fricatives,
noise and silence remain largely unaffected by Praat’s pitch manipulation.

A key difference to modifying the duration tier of a Manipulation lies in
the fact that the pitch tier is initially already filled with the Sound’s pitch
contour, manifested as a number of points and of course influenced by the pa-
rameters used for the pitch extraction. In fact, if the parameters supplied to the
To Manipulation... command are insufficient, we can use another command (such
as To Pitch (ac)...) to extract the pitch to a Pitch object, modify that if desired,
and then insert the resulting pitch contour into a Manipulation by converting it
with the Down to PitchTier command and using the Replace pitch tier command
as above.

Additionally, Praat offers the possibility of using quadratic splines to inter-
polate between two points in a PitchTier in such a way that a number of evenly
spaced new points are inserted not along a line connecting the two initial points,
but along a curve sloping smoothly from one point to the other. The command
for this is Interpolate quadratically..., and its effect can be seen in Figure 4.11.

90

Figure 4.11: Effect of quadratic interpolation on a pitch contour

Time (s)
0 1

0

500

Fr
eq

ue
nc

y
(H

z)

Time (s)
0 1

0

500

Fr
eq

ue
nc

y
(H

z)

4.5 Formant manipulation

Using Praat’s source-filter synthesis features, it is possible to modify the for-
mants of a Sound. This involves three steps:

1. Create a source Sound from the Sound

2. Create a filter FormantTier

3. Filter the source

The first step is fairly straightforward. We first create an LPC object from
the resampled original Sound8 using the command To LPC (burg)... or an equiva-
lent alternative from the Formants & LPC submenu. We then select the original
Sound along with this LPC and apply the command Filter (inverse) which cre-
ates the source Sound.

The next step is to create a filter in the form of a FormantTier object.
To create a blank FormantTier, we use the Create FormantTier... command. To
manipulate the original Sound’s formants, however, we create a Formant object
from the Sound, using the To Formant (burg)... command (or equivalent) and
convert that to a FormantTier object with the command Down to FormantTier.
This will serve as the filter.

Once the FormantTier has been modified as desired (see below), we simply
select it along with the source Sound and apply the Filter command. However,
we should bear in mind that this kind of LPC resynthesis significantly lowers
the fidelity of the resulting signal, since the not all linear prediction coefficients
have survived in the Formant object.

4.5.1 Selective formant manipulation

The actual manipulation consists of modifying the FormantTier before filter-
ing the source Sound. Unfortunately, Praat has no FormantTier Editor, and
each point in the FormantTier consists of several frequency-bandwidth pairs
which cannot be individually manipulated. The solution is to store all points in
the portion of the Sound to be modified, then remove those points and finally
reinsert them again, but with certain changes, as desired.

8Resampling to twice the frequency of the highest forment increases the accuracy of the
LPC analysis

91

The following script illustrates this process by switching all formants in all
non-empty intervals of a certain tier one non-empty interval to the right. This
changes 123 (Figure 4.12) to Figure 4.13.

Listing 4.8: Switch all formants in non-empty intervals
form Switch formants on tier

natural Tier 2

natural LPC_components 10

integer Resample 10000 (=0 to disable)

natural Formants 5

boolean Cleanup 1

endform

store selection

soundID = selected (" Sound ")

tgID = selected (" TextGrid ")

store vowel boundaries on selected tier in arrays

minus soundID

numInts = Get number of intervals ... tier

numV = 0

for i to numInts

label$ = Get label of interval ... tier i

if label$ <> ""

numV += 1

vowel_ 'numV '_start = Get starting point ... tier i

vowel_ 'numV '_end = Get end point ... tier i

endif

endfor

resample if desired

select soundID

if resample

noprogress Resample ... resample 50

resampledID = selected ()

endif

extract source

noprogress To LPC (burg)... lPC_components 0.025 0.005 50

lpcID = selected ()

if resample

plus resampledID

else

plus soundID

endif

Filter (inverse)

sourceID = selected ()

create filter and store all FormantTier points in array

select soundID

noprogress To Formant (burg)... 0 formants 5500 0.025 50

formID = selected ()

Down to FormantTier

ftID = selected ()

numP = Get number of points

for p to numP

time = Get time from index ... p

for f to formants

point_ 'p'_F 'f' = Get value at time ... f time

point_ 'p'_B 'f' = Get bandwidth at time ... f time

endfor

point_ 'p'_time = time

92

endfor

for each vowel , find relevant FormantTier points

for v to numV

start = vowel_ 'v'_start
end = vowel_ 'v'_end
vowel_ 'v'_firstPoint = Get high index from time ... start

vowel_ 'v'_lastPoint = Get low index from time ... end

endfor

for v to numV

if v < numV

otherV = v + 1

else

otherV = 1

endif

start = vowel_ 'v'_start
end = vowel_ 'v'_end

switch points with next/other vowel

firstPoint = vowel_ 'v'_firstPoint
firstPoint_time = point_ 'firstPoint '_time
lastPoint = vowel_ 'v'_lastPoint
lastPoint_time = point_ 'lastPoint '_time
timestep = (lastPoint_time - firstPoint_time)

... / (vowel_ 'otherV '_lastPoint - vowel_ 'otherV '_firstPoint)
Remove points between ... start end

time = firstPoint_time

for p from vowel_ 'otherV '_firstPoint to vowel_ 'otherV '_lastPoint
formants$ = ""

for f to formants

freq = point_ 'p'_F 'f'
bndw = point_ 'p'_B 'f'
formants$ = "'formants$ ' 'freq ' 'bndw '"

endfor

Add point ... time 'formants$ '
time += timestep

endfor

endfor

filter

plus sourceID

Filter

finalSoundID = selected ()

cleanup

if cleanup

plus ftID

plus formID

plus sourceID

plus lpcID

if resample

plus resampledID

endif

Remove

endif

select soundID

plus tgID

93

Figure 4.12: Sound and TextGrid 123 with two vowels marked

0.4236

0

0

2500

Fr
eq

ue
nc

y
(H

z)

sil one sil two sil three sil

u: i:

Time (s)
0 4.30807

Figure 4.13: Sound and TextGrid 123 with formants switched (and sil intervals
silenced)

0.9019

0

0

2500

Fr
eq

ue
nc

y
(H

z)

sil one sil tea sil through sil

i: u:

Time (s)
0 4.30807

94

4.6 Low-level sound manipulation

We can “bypass” Praat’s commands and access the samples stored in a Sound
object directly, even changing individual samples with the command Set sample

number.... This low-level access is the only way to accomplish tasks for which no
Praat command exists; examples follow in this Section. First, however, we will
have a look at how to access a Sound directly, without using commands from
the Query submenu, and then learn about using Formulas.

4.6.1 Direct Sound access

Similar to what we saw in Section 3.1, we can access a Sound in the object list
directly, even when it is not selected, and use its attributes and data in scripts
and numeric Praat command arguments. The syntax, just like with TableOfReal

objects, is Sound_foo, where foo is the name of the Sound, or (more robustly for
lack of potential ambiguity) Object_n, where n is the ID of the Sound in question.
Table 4.1 gives a non-exhaustive overview of common Praat commands and their
direct access equivalents.9 Keep in mind that direct object access is read-only ;
to modify a Sound, the appropriate Praat commands must be used.

Table 4.1: Standard Praat commands vs. direct object access (Sound)
Get start time Object_'id'.xmin

Get end time Object_'id'.xmax

Get total duration Object_'id'.xmax - Object_'id'.xmin

Get number of samples Object_'id'.nx or
Object_'id'.ncol

Get sampling period Object_'id'.dx

Get sampling frequency 1 / Object_'id'.dx

Get value at time... t Linear Object_'id'(t)

Get value at sample number... s Object_'id'[s]

Note that when attempting to access values that are out of bounds (e.g. a
value at a time after the end of the Sound), Praat will return 0.

4.6.2 Formulas

Many Praat commands take a formula as one of their arguments. Such a formula
is essentially a small, single-line script with restricted syntax. In fact, it is limited
to expressions that return a numeric value. A number of special variables can
be used in the formula, but no new variables may be declared, although when
using a formula within a script, the script’s variables may of course be used
within the formula. Also, to allow the use of conditions, an abbreviated syntax
can fit a simple condition into the formula:
if condition then value1 else value2 fi

where condition, value1, and value2 are expressions returning a numeric value.
Note that there is no provision for an elif block, and that the else block is
mandatory.

9For the standard commands to work, the Sound with ID id must be selected. This is not
required for direct object access.

95

The formula is applied to each sample in the signal, and the value it returns
becomes the new value for the sample. The expressions used can be constants
(i.e. numbers) or functions returning a constant. When applying a function to an
object, the following formula-internal variables may be used to access available
objects:

Table 4.2: Predefined variables in a Sound formula
self value of current sample
col number of current sample
x time of current sample
xmin time of first sample
xmax time of last sample
nx or
ncol

number of samples

dx sampling period

4.6.3 Examples

Applying what we just learned, there are many possible uses for formulas and
direct Sound access. Several examples follow.

Increasing/reducing amplitude

This is just for warming up. We can multiply every sample in a Sound by a
constant factor, thereby increasing or reducing its amplitude (depending on
whether the factor is larger or smaller than 1).

Listing 4.9: Multiply a Sound’s sample values
form Multiply

real Multiplication_factor 1.5

endform

Formula ... self * multiplication_factor

This script merely imitates Praat’s Multiply... command.

Adding echo

To add an echoing effect to a Sound, we simply cycle through each sample and
add to it the value of the sample at a previous time, determined by a constant
delay. Since the Sound is modified in place, the form describes the script as
“inline”.

Listing 4.10: Add echo to a Sound
form Add echo (inline)

real Delay 0.25

real Amplitude 0.5

endform

Formula ... self + amplitude * self(x - delay)

96

Mixing two Sounds together

We can mix two Sounds by adding their samples together. Assuming both
Sounds start at zero and have the same duration and sampling frequency (i.e.
the same number of samples), we could insert one Sound’s samples directly into
the other Sound. By multiplying each Sound’s samples by a certain factor, we
can control the ratio and amplitude of the resulting Sound.

Listing 4.11: Mix two Sounds into one
form Mix two Sounds

real Factor_Sound_1 0.5

real Factor_Sound_2 0.5

endform

sound1 = selected ("Sound", 1)

minus sound1

Formula ... factor_Sound_1 * Sound_ 'sound1 '[col] + factor_Sound_2 * self

We could also create a new Sound containing the mix, and make the proce-
dure more robust by accounting for different source sampling rates, as well as
different time domains, choosing appropriate values so that nothing is lost.

Listing 4.12: Create a new Sound as mix of two Sounds
form Mix two Sounds

real Factor_Sound_1 0.5

real Factor_Sound_2 0.5

endform

sound1 = selected ("Sound", 1)

sound2 = selected ("Sound", 2)

Create Sound ... mix

... "if Object_ 'sound1 '.xmin < Object_ 'sound2 '.xmin

... then

... Object_ 'sound1 '.xmin

... else

... Object_ 'sound2 '.xmin

... fi"

...

... "if Object_ 'sound1 '.xmax > Object_ 'sound2 '.xmax

... then

... Object_ 'sound1 '.xmax

... else

... Object_ 'sound2 '.xmax

... fi"

...

... "if 1 / Object_ 'sound1 '.dx > 1 / Object_ 'sound2 '.dx

... then

... 1 / Object_ 'sound1 '.dx

... else

... 1 / Object_ 'sound2 '.dx

... fi"

...

... factor_Sound_1 * Object_ 'sound1 '(x)

... + factor_Sound_2 * Object_ 'sound2 '(x)

This script demonstrates an additional use of formulas in that it does not first
query the original Sounds (start, end, and sampling frequency), store the values
in variables and supply these as arguments to the Create Sound... command, but

97

inserts the relevant conditional code as formulas in the appropriate fields of the
command directly. Note the use of double quotes to separate the command’s
arguments.

For legibility, the command’s long list of formula-arguments has been liber-
ally split into continuation lines.

Smoothing/noise reduction

We can reduce noise (i.e. randomness in the signal) by smoothing a Sound’s
samples. One method of doing this is by setting each sample to the mean of its
own value and that of its two adjacent samples.

Listing 4.13: Smooth a Sound (3 samples, inline)
Formula ... (self[col - 1] + self + self[col + 1]) / 3

If we want to increase the window length (the number of samples taken into
account), the formula becomes longer.

Listing 4.14: Smooth a Sound (5 samples, inline)
Formula ... (self[col - 2] + self[col - 1] + self + self[col + 1]

... + self[col + 2]) / 5

However, if we want to set a window length of n samples while avoiding
modifying the signal before all means have been calculated, we very quickly
run into several limitations: Formulas cannot be longer than 98 characters, and
there are no loops in formula syntax. For such purposes, we would have to use
a “real” script.

Listing 4.15: Smooth a Sound (n samples)
form Smooth

natural Window_length 3

endform

sound = selected ()

name$ = selected$ (" Sound ")

Copy ... 'name$ '_smoothed
Set part to zero ... 0 0 at exactly these times

for col to Object_ 'sound '.ncol
window_total = 0

for s from col - window_length to col + window_length

window_total += Object_ 'sound '[s]
endfor

window_mean = window_total / (2 * window_length + 1)

Set value at sample number ... col window_mean

endfor

4.6.4 Creating Sounds from scratch

Apart from ready-made Sounds such as gamma and Shepard tones (Create Sound

from gamma-tone... and Create Sound from Shepard tone..., respectively), we can
use the Create Sound... command with formulas to produce audible10 signals
from mathematical functions. Several common examples follow, each with the

10Depending on the function, of course!

98

equation of the function, a portion of the signal’s oscillogram and a script used
to produce it. Of course, the possibilities are theoretically endless, but limited in
practice by the maximal length of the string passed as the formula. For formulas
longer than 98 characters, we will have to create a blank, “canvas” Sound and
modify it using the Set value at sample number... command repeatedly in a loop.

Silence

0

Figure 4.14: Silence

Time (s)
0 0.05

–1

1

0

Listing 4.16: Generate silence
form Create silence

sentence Name silence

real Start_time_(s) 0.0

positive End_time_(s) 1.0

natural Sampling_frequency_(Hz) 44100

endform

Create Sound ... 'name$ ' start_time end_time sampling_frequency

... 0

White noise

randomUniform(−A, A)

where A is the amplitude of the signal

Figure 4.15: White noise

Time (s)
0 0.05

–1

1

0

Listing 4.17: Generate white noise
form Create white noise

99

sentence Name white_noise

real Start_time_(s) 0.0

positive End_time_(s) 1.0

natural Sampling_frequency_(Hz) 44100

positive Amplitude_(Pa) 0.8

endform

Create Sound ... 'name$ ' start_time end_time sampling_frequency

... randomUniform(-amplitude , amplitude)

Sine

A sin (2πfx)

where f is the signal frequency

Time (s)
0 0.05

–1

1

0

Listing 4.18: Generate a sine wave
form Create sine

sentence Name sine

real Start_time_(s) 0.0

positive End_time_(s) 1.0

natural Sampling_frequency_(Hz) 44100

natural Frequency_(Hz) 100

positive Amplitude_(Pa) 0.8

endform

Create Sound ... 'name$ ' start_time end_time sampling_frequency

... amplitude * sin(2 * pi * frequency * x)

Square

Listing 4.19: Generate a square wave
form Create square

sentence Name square

real Start_time_(s) 0.0

positive End_time_(s) 1.0

natural Sampling_frequency_(Hz) 44100

natural Frequency_(Hz) 100

positive Amplitude_(Pa) 0.8

endform

period

p = 1 / frequency

Create Sound ... 'name$ ' start_time end_time sampling_frequency

... if x mod p <= p / 2

... then

100

{
A if 0 ≤ x mod T ≤ T

2

−A if T
2 ≤ x mod T ≤ T

where T is the length of one signal pe-
riod

Figure 4.16: Square waveform (5 peri-
ods)

Time (s)
0 0.05

–1

1

0

... amplitude

... else

... -amplitude

... fi

Sawtooth

2A

T

((
x +

T

2

)
mod T − T

2

)

Figure 4.17: Sawtooth waveform (5 pe-
riods)

Time (s)
0 0.05

–1

1

0

Listing 4.20: Generate a sawtooth wave
form Create sawtooth

sentence Name sawtooth

real Start_time_(s) 0.0

positive End_time_(s) 1.0

natural Sampling_frequency_(Hz) 44100

natural Frequency_(Hz) 100

positive Amplitude_(Pa) 0.8

endform

period

p = 1 / frequency

Create Sound ... 'name$ ' start_time end_time sampling_frequency

... 2 * amplitude / p * ((x + p / 2) mod p - p / 2)

101

Triangle

A

(
4
T
·
∣∣∣∣(x +

3T

4

)
mod T − T

2

∣∣∣∣− 1
)

Figure 4.18: Triangle waveform (5 peri-
ods)

Time (s)
0 0.05

–1

1

0

Listing 4.21: Generate a triangle wave
form Create triangle

sentence Name triangle

real Start_time_(s) 0.0

positive End_time_(s) 1.0

natural Sampling_frequency_(Hz) 44100

natural Frequency_(Hz) 100

positive Amplitude_(Pa) 0.8

endform

period

p = 1 / frequency

Create Sound ... 'name$ ' start_time end_time sampling_frequency

... amplitude * (4 / p * abs((x + 3 * p / 4) mod p - p / 2) - 1)

Pulse train

{
A if x mod T = 0
0 if x mod T 6= 0

Figure 4.19: Pulse train waveform (5 pe-
riods)

Time (s)
0 0.05

–1

1

0

Time (s)
0 0.05

–1

1

0

Listing 4.22: Generate a pulse train
form Create pulse train

102

sentence Name pulse_train

real Start_time_(s) 0.0

positive End_time_(s) 1.0

natural Sampling_frequency_(Hz) 44100

natural Frequency_(Hz) 100

positive Amplitude_(Pa) 0.8

endform

period

p = 1 / frequency

Create Sound ... 'name$ ' start_time end_time sampling_frequency

... if x mod p < 1 / sampling_frequency

... then

... amplitude

... else

... 0

... fi

103

	A Short Preview
	Automating Praat
	The Script Editor
	Batch open script
	Repeating commands
	for loop
	Strings file list
	Simple dialog windows
	Good scripting practices

	Scripting Fundamentals
	My first program
	Scripting elements
	Comments

	Variables
	Variable names
	Variable types

	Operators and functions
	Mathematics
	String handling
	Variable evaluation
	Comparison operators

	Flow control
	Conditions
	Loops

	Arrays
	Procedures
	Arguments to procedures
	Local variables

	Arguments to scripts (part 1)
	External scripts
	include
	execute

	File operations
	Paths
	File I/O
	Deleting files
	Checking file availability

	Refined output
	Controlled crash with exit

	Self-executing Praat scripts
	Linux
	Windows

	System calls

	Praat GUI
	Object Window
	Menu bar
	Objects
	Dynamic menu

	Script Editor
	Running scripts
	Command history

	Output
	Info Window
	Error messages
	Other forms of output

	Objects in scripts
	Object selection commands
	Querying selected objects

	Praat command syntax
	Praat commands in scripts

	Editor scripting
	Sound Editors

	Picture Window
	Picture Window basics
	Custom drawing commands
	Data analysis with the Picture Window

	Scripting Techniques
	TextGrid processing
	Batch processing
	Single directory processing
	Subdirectory processing
	Recursive subdirectory processing

	Sound Editing
	Editing with the Sound Editor
	Sound clipboard
	Other editing commands

	Editing with the Object Window
	Extracting parts of Sounds
	Concatenating Sounds
	Examples

	Duration manipulation
	PSOLA
	The Manipulation object
	Selective interval equalization
	Selective interval equalization without Manipulation object

	Pitch manipulation
	Pitch manipulation with the Manipulation object

	Formant manipulation
	Selective formant manipulation

	Low-level sound manipulation
	Direct Sound access
	Formulas
	Examples
	Creating Sounds from scratch

