

TOWARD THE USE OF INFORMATION DENSITY BASED DESCRIPTIVE FEATURES IN HMM BASED SPEECH SYNTHESIS Sébastien Le Maguer¹, Bernd Möbius¹, Ingmar Steiner^{1,2}

¹ Computational Linguistics and Phonetics, Saarland University, Saarbrücken, Germany, ²DFKI

Introduction

• Background

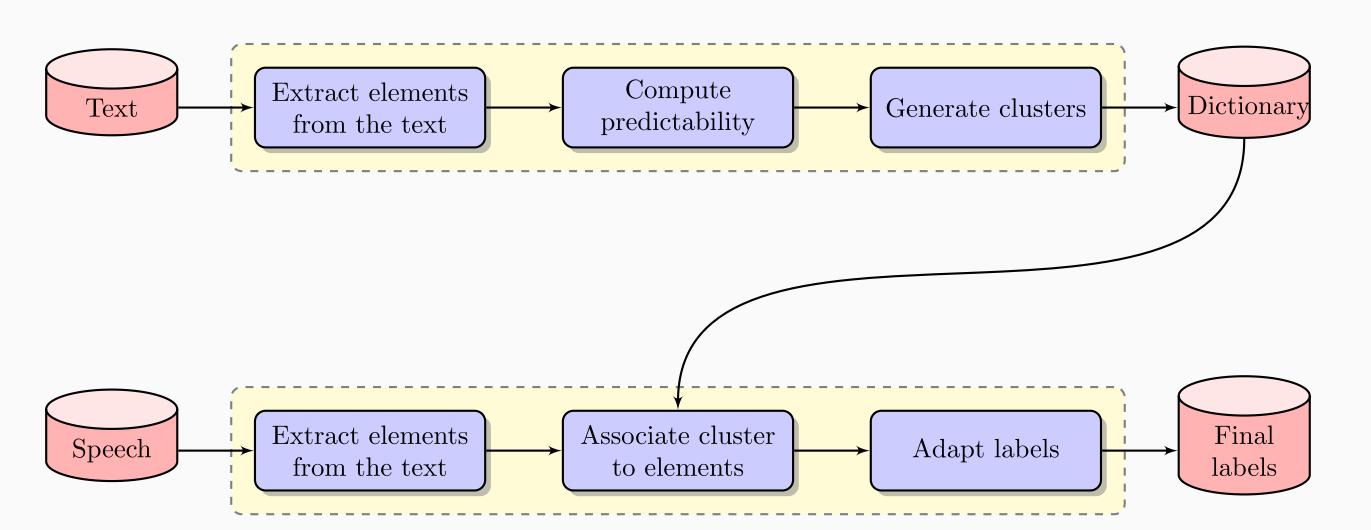
- -Statistical TTS = huge effort assigned to acoustic modelling
- -Descriptive feature set = almost the same for each system (the one presented in [1])

• Problem

-How to enrich this descriptive feature set?

• Proposition

Unpredictability (Surprisal)


Once upon a ?

 $Suprisal(U_i) = -log_2(P(U_i|U_{i-1}..U_{i-1-N}))$

-New descriptive feature = unpredictability of an event -Based on information density & widely used in computational linguistics

• Predictability of a word correlates with processing effort of pronouncing this word [2] • Same correlation found at the syllable level [3].

Process

Feature Generation

Problem: homogeneous representation (text/speech)

• Syllable based

-**IPA** phoneme representation

• Word based

- -All punctuation marks are discarded;
- -A break mark is inserted at the **end of each paragraph**;
- -All words are converted to **lower case**

Objective Evaluation

Experimental Setup

Distance Analysis

Tree Analysis

• Speech corpus

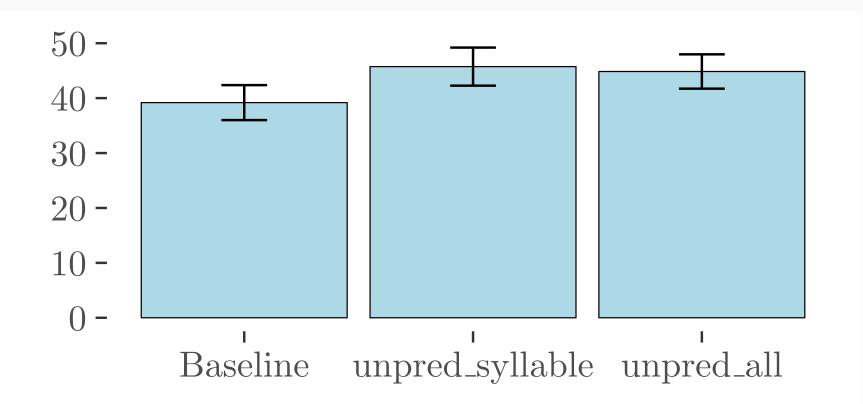
- -From "Black Beauty" (2013 Blizzard Challenge), $-1 h (\sim 470 \text{ utterances}) = 13522 \text{ syl.}, 7038 \text{ words},$
- -Segmented using EHMM + manually corrected

• Text corpus

-2013 Blizzard Challenge – "Black Beauty" -82 books = 951 316 syl., 1973 368 words

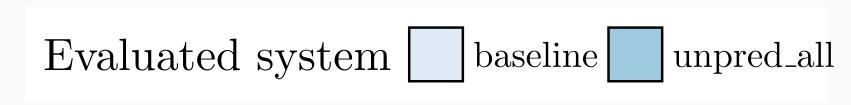
• System setup

- -HTS 2.2 standard configuration -Vocoder = STRAIGHT + MLSA filter
- $-MGC(50) + LF0(1) + BAP(25) + \Delta + \Delta\Delta$


• 6 new descriptive features
-syl-unpredictability (P, C, N)
-word-unpredictability (P, C, N)

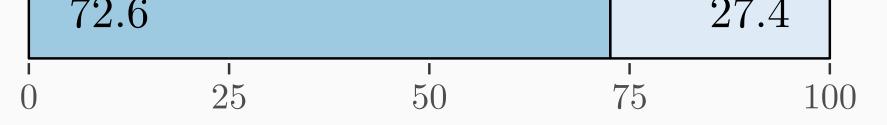
- 3 conditions
- -baseline -unpred_syllable -unpred_all

Condition	MCD	RMS-F0	VER	RMS-dur
baseline	6.45	475	15	11.1
$unpred_syllable$	6.33	463	14.6	10.6
$unpred_all$	6.33	467	14.8	10.4


baseline	unpred_syl.	unpred_all
1648	1615	1594
2174	2037	1175
0	0	694
5799	$\boldsymbol{5652}$	4056
98	128	183
0	1657	4163
7836	6787	4202
2928	2817	2188
0	0	7834
1184	1573	802
8723	8323	$\boldsymbol{5892}$
7260	7429	6799
	1648 2174 0 5799 98 0 8 2928 0 1184 8723	2174 2037 0 0 5799 5652 98 128 0 1657 7836 6787 2928 2817 0 0 1184 1573 8723 8323

MUSHRA Evaluation

Subjective Evaluation


Preference Evaluation

Analysis

• AB

-Clear preference for the proposed system • MUSHRA

- -Improvement \Rightarrow just a tendency
- -Evaluation: Spectrum vs. prosody?

• Global

-Assumption = spectrum not impacted, prosody + natural

Conclusion

- New descriptive feature: unpredictability (widely used in computational linguistics) • Full process to compute and apply these features
- Objective analysis
- -Similarity not impacted
- -Model takes this feature into account
- Subjective evaluation: preference for our system \Rightarrow which dimension?

Bibliography

[1] K. Tokuda, H. Zen, and A. W. Black, "An HMM-based speech synthesis system applied to English," in Proceedings of the Speech Synthesis Workshop (SSW), 2002. [2] M. Kutas, K. A. DeLong, and N. J. Smith, "A look around at what lies ahead: Prediction and predictability in language processing," in *Predictions in the Brain: Using Our* Past to Generate a Future, M. Bar, Ed. Oxford University Press, 2011, pp. 190–207. [3] T. F. Jaeger, "Redundancy and reduction: speakers manage syntactic information density," Cognitive Psychology, vol. 61, pp. 23–62, 2010.