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Abstract: Nearly all automatic speech segmentation approaches rely solely on
acoustic features, which differs from the way humans segment speech using pho-
netic annotation software.
In order to get closer to human-level precision in speech segmentation, we adopt a
multimodal approach to improve the segmentation accuracy. To this end, we ana-
lyze a database of segmentation behavior collected using an eye tracker, obtained
from human experts performing a manual segmentation task. This allows us to in-
troduce gaze as an additional modality for automatic segmentation by transforming
it into features for image based phoneme segmentation (ISeg).
Experiments were conducted for automatic speech segmentation, comparing the
image-only, ISeg technique, as well as ISeg combined with hidden Markov model
(HMM) based acoustic segmentation, with respective segmentation approaches
conditioned on the gaze data. The results show that enhancing the image based
segmentation with gaze information improves the accuracy of ISeg, as well as ISeg
combined with HMMs.

1 Introduction

Phonetic segmentation is the process of inserting boundaries into the time domain of a speech
signal, to match distinct phonetic units (phones), typically also labeling each unit. The output
of phonetic segmentation is a set of boundaries, representing the start and end times of the
phones of an utterance. Segmented speech data is an essential requirement for most speech-
related applications and research. For instance, it is used in phonetic analysis, in text-to-speech
synthesis systems, and for bootstrapping the training of acoustic models for speech recognition.

There are two main ways of obtaining phonetic segmentation, viz., manual and automatic
segmentation. During manual segmentation, phonetic experts visually inspect short spans of
speech and place boundaries within each span. In order to decide on a boundary, several sources
of information are typically used: (a) the spectrogram as a time-frequency representation of the
acoustic signal to detect boundaries based on the intensity changes in the frequency domain;
(b) the oscillogram as a time-intensity representation; and (c) playback of audio segments to
perceptually verify that a boundary suitably separates two phones. During the entire process, the
expert uses a graphical user interface (GUI) and relies on prior knowledge to segment speech.

Manual segmentation tends to yield better quality than automatic segmentation [1]. How-
ever, it is very time-consuming, and expensive for large corpora; moreover, consistency can vary
significantly across annotators (or even within the same annotator over time). As a solution,
automatic segmentation is desired, as it is fast and reproducible. In automatic segmentation,
acoustic features (commonly, mel-frequency cepstral coefficients (sMFCCs) [2] or perceptual
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Figure 1 – (left) Data recording and (right) segmentation

linear prediction (PLP) [3] features) are extracted from the speech signal, which represent the
continuous signal as discrete frames. These features are then used to train a model for seg-
mentation. The use of acoustic features gives an acceptable segmentation quality for clean,
well-recorded speech; however, these features are derived from only one of several informa-
tion sources (acoustics) that humans use to segment speech. Therefore, we hypothesize that the
quality of automatic segmentation can be improved by using more information sources in the
segmentation process, such as a modality corresponding to the visual domain.

In order to find a candidate modality, we recorded human segmentation behavior to investi-
gate the information sources they used to segment speech [4]. After analyzing the recorded data,
it was found that most visual attention was focused on the spectrogram region of the Praat GUI
and that gaze can serve as a correlate of annotator attention during the segmentation process
[4]. This data is used to derive gaze features and used in the segmentation process to improve
the quality. In Fig. 1, the data recording (left) and the feature processing step, i.e. how gaze data
is transformed into weights to be used in segmentation, are shown. This makes the modeling of
the segmentation more similar to the behavior of human annotators, who use more information
sources than acoustics to segment speech.

The rest of this paper is organized as follows. Section 2 provides an overview of previous
work on visual attention and spectrogram based speech segmentation. In Section 3, we briefly
describe the gaze data of phoneticians and its processing. In Section 4, the combination of
gaze data with other segmentation techniques – image based phoneme segmentation (ISeg) and
hidden Markov models (sHMMs) – is shown along with results. Finally, we conclude the paper
in Section 5 and discuss potential limitations of the approach.

2 Background

Gaze is a strong indicator for attention [5]. When humans look at a scene, they continuously
make eye movements called saccades. Between saccades, the eyes remain constant, resulting
in fixations, whose duration is usually 200 ms to 300 ms [6]. New information is only perceived
during fixations, as the saccades are rapid movements and the scene is blurred for perception
[7]. There is some disagreement between researchers on whether to include saccades with
fixations when computing gaze durations [6]; in this work, we have considered only fixations
for computing gaze durations.

The relationship of fixation durations and the important regions of a scene has been estab-
lished by many researchers. For instance, Loftus and Mackworth [8] showed that important
objects in the scenes are fixated more and longer than less important objects. Kundel et al. [9]
have reported that fixation durations are directly correlated with high informativeness in the
scene.

The visual representation of speech, particularly in the form of spectrograms, has long been
used by humans for labeling speech recordings [10]. Dennis et al. [11] have used spectrogram
image features for the classification of sounds. Other researchers have already used spectro-
grams as a modality, along with the acoustic features, for automatic speech segmentation. In
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Table 1 – The results of fusing ISeg [12] with HMM segmentation using the TIMIT corpus [13].

Method CDR(%) OS(%) FA(%) F-score R-value

ISeg 78.07 7.74 27.54 0.75 0.78
HMM 84.57 7.73 21.50 0.81 0.83
ISeg+HMM (raw) 94.90 104.24 53.53 0.62 0.09
ISeg+HMM (pruned) 89.75 33.98 33.01 0.77 0.67

particular, Leow et al. [12] used spectrogram images as features for improving the accuracy of
automatic segmentation. In their work, the spectrogram is treated as an image, and then image
based techniques are applied to enhance the spectrogram. After this enhancement, the bound-
aries are computed using the ISeg algorithm. This approach is based on the fact that locations in
the spectrogram where sudden changes occur in intensity along the time axis, are likely the can-
didates for phone boundaries. The results of ISeg are then merged with a conventional, HMM
based segmentation.

We choose the ISeg algorithm to be used in our work because it directly uses the spectro-
gram for segmentation without any prior knowledge of the speech. Additionally, the results of
ISeg are comparable to other unsupervised segmentation algorithms [14, 15, 16]. Table 1 shows
the segmentation results of the ISeg algorithm and combining it with HMM based segmentation
using the TIMIT corpus. The F-score and R-value, which were missing in the original paper,
are also computed.

3 Segmentation data

In order to observe the human segmentation behavior, we used a multimodal corpus recorded
from phoneticians performing manual segmentation tasks [4]. This corpus contains eye-tracking
data from seven phoneticians (identified as “vp02” to “vp08”) with varying amounts of segmen-
tation experience. Each participant was asked to segment the same 46 s speech recording using
Praat [17]. The audio recording contains the standard passage, “The North Wind and the Sun”
[18], read by a male native speaker of English. At the end of each session, the manual segmen-
tation produced by the participant was saved.

Manual segmentation is subjective and experts do not always agree on individual bound-
aries. Even if the number of boundaries matches for two annotators, the exact timestamps will
still differ to some degree [1, 19]. In order to check the inter-annotator agreement among the
participants, we calculated the Fleiss’ kappa [20], which resulted in a score of 0.71, indicating
a substantial agreement according to Landis and Koch [21].

4 Experiments and Discussion

We conducted several experiments in order to combine different segmentation results and inves-
tigate the effectiveness of gaze data for automatic segmentation. First, we explain the different
types of segmentation used, and how they were obtained.

Automatic segmentation To get automatic segmentation for the audio, the WebMAUS forced
aligner [22] was used, which uses an HMM based model to get the segmentation.

Manual segmentation The segmentation obtained at the end of each participant recording ses-
sion, this serves as the ground truth for comparing the results with the HMM segmentation.

ISeg segmentation The recorded audio was segmented by applying the ISeg algorithm to the
spectrograms, without using any transcriptions. The parameters used for computing the
spectrogram are the same as in Leow et al. [12].

199



Table 2 – Explanation of performance metrics. NT is the total number of boundaries found by the
segmentation algorithm. NH is the number of correctly detected boundaries, after comparison with the
manual segmentation. NR is the total number of boundaries found in the reference segmentation.

Measure Formula Description

Correct detection rate CDR = NH
NR

CDR shows how many boundaries are correctly detected out of the
total correct boundaries in the reference.a

Over-segmentation OS = NT
NR
−1 OS is an indicator of how many additional boundaries were detected.

False alarm FA = 1− NH
NT

FA shows the number of falsely detected boundaries.

aaccording to each participant’s manual segmentation

Table 3 – The correct detection rate (CDR), over-segmentation (OS), false alarm (FA) rate, F-score, and
R-value given as mean (µ) and standard deviation (σ ) across all participants, for the different conditions
of the segmentation experiment.

CDR (%) OS (%) FA (%) F-score R-value
Condition µ σ µ σ µ σ µ σ µ σ

ISeg 70.20 1.97 0.55 8.95 29.82 4.94 0.70 0.02 0.74 0.03
ISeg+gaze 78.72 3.17 34.56 8.75 41.30 4.35 0.67 0.04 0.60 0.07
HMM 67.53 5.01 −9.37 8.06 25.37 2.89 0.71 0.03 0.75 0.02
ISeg+HMM 71.10 1.92 3.48 9.20 30.94 4.85 0.70 0.02 0.73 0.03
ISeg+HMM+gaze 79.58 2.95 37.78 9.49 42.03 4.15 0.67 0.03 0.58 0.07

4.1 Performance metrics

The boundaries of the automatic segmentation are compared with the manual segmentation,
which is taken as the reference. We used the evaluation criteria as given by Leow et al. [12] and
Estevan et al. [16], and as explained in Table 2. A threshold of 20 ms is used for comparing a
reference and segmented boundary.

No single metric defined in Table 2 alone penalizes the performance of the segmentation
with respect to falsely inserted boundaries. Therefore, two additional metrics were used, the F-
score and the R-value [23]. Both F-score and R-value range from 0 to 1, with a value of 1 being
the ideal segmentation where all the segmented boundaries lie within 20 ms of the reference
boundaries and where no additional boundaries were inserted. The F-score, (1), shows the
trade-off between precision and recall and is defined as:

F =
2.0×PRC×CDR

PRC+CDR
(1)

where precision is given as PRC = 1−FA.
The R-value shows the performance of segmentation against the increase in falsely inserted

boundaries and is given as:

R = 1− |r1|+ |r2|
200

(2)

where r1 and r2 are defined as:

r1 =
√
(100−CDR)2 +(OS)2 (3) r2 =

−OS+CDR−100√
2

(4)

4.2 Fusing gaze data with spectrograms

An initial step in the ISeg algorithm is to convert the audio signal into a spectrogram S having N
rows and M columns. To combine the gaze data with the image based segmentation, it should be
converted into frames such that each column of the spectrogram corresponds to a single frame
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Figure 2 – The correct detection rate (CDR) for different conditions is shown for all participants. Out
of all conditions, ISeg+HMM+gaze gives the best CDR.

of gaze data. For a 16 kHz speech signal, having a window size of 8 ms and an overlap of 4 ms,
each column of the spectrogram corresponds to 4 ms of speech as specified by Leow et al. [12].

In order to collect the gaze data for the same segment of speech, the signal was divided
into frames of 4 ms to ensure that the gaze data and the spectrogram column belong to the same
segment of speech. This also ensures that the number of columns in the spectrogram and the
number of frames of the gaze data are the same. We computed for each frame its accumulated
fixation duration by summing up all fixation durations that occurred in the corresponding frame.
The fixations from the spectrogram region were considered for this purpose. The results were
assembled in a vector ~F , such that the entry fi represents the accumulated fixation duration for
frame i. To apply the gaze data to S, the vector ~F is converted into a weight vector ~W whose
entries wi are computed as follows:

wi =


0.7 if fi = 0
1.0 if 0.7 < fi < mean(~F)

1.2 if mean(~F)< fi < 2×mean(~F)

1.5 if fi > 2×mean(~F)

(5)

The weights are applied to the columns of the spectrogram, producing a new spectrogram S′:

S′ = (diag(~W )S>)> (6)

These weights were obtained by trying out different settings and selecting the weights that led
to the best results. A small value of wi reduces the intensity of that column of the spectrogram,
and vice versa. The spectrogram S′ is normalized to bring the intensity values to the range
[0,255]. Finally, a median filter [24, pp. 469–476] is applied, with the same settings as [12], to
remove any noise. The modified spectrogram S′ is processed for segmentation according to the
ISeg algorithm. Table 3 summarizes the results of combining gaze data with these experimental
conditions:

ISeg reference, image-only ISeg algorithm;
ISeg+gaze ISeg combined with gaze data;
HMM baseline, acoustic-only HMM segmentation;
ISeg+HMM ISeg combined with HMM segmentation;
ISeg+HMM+gaze ISeg combined with gaze data and HMM segmentation.

4.3 Fusion results

Fig. 2 shows the CDR for all conditions and for all the participants. From the figure, it is
evident that the ISeg+HMM+gaze condition outperforms all other conditions with respect to

201



CDR. However, CDR alone is not a useful metric to evaluate segmentation as it does not take
into account the over-segmentation that was caused by unwanted boundaries. Therefore, the
results are discussed in detail with the effect of OS and the R-value.

Table 3 lists the results for all scores, over all participants and conditions. It should be noted
that our corpus is different from the TIMIT corpus in several ways. First, the duration of the
audio file is longer than the average TIMIT sentence; second, we noticed an audible background
noise in our corpus which is not present in the TIMIT corpus. Therefore, a difference in the
results is inevitable. Considering these differences, the segmentation of our data gives different
results than that of the TIMIT corpus (see Table 1) with a CDR of 70% and an R-value of 0.74.

As we can see in Table 3, by comparing the performance of ISeg and ISeg+gaze, the gaze
data with the ISeg algorithm improves the CDR by 8%. The OS increases, which shows that not
all boundaries added by ISeg were correct. This effect is also visible in the R-value, which is
reduced from 0.74 to 0.60. These results show that adding gaze data improves the performance
of the ISeg algorithm, albeit at the cost of an increased OS rate.

For the HMM results, we get a low CDR. The reason for this could be the unusual length
of the utterance, i.e., 46 s, as WebMAUS is generally designed for shorter utterances. The
HMM segmentation has a negative mean OS of -9.37%, which is due to the fact that the manual
segmentations produced by the phoneticians contain more boundaries than the HMM segmen-
tations. When the ISeg results are combined with the HMM segmentation, an improvement is
achieved in the CDR with a slightly higher OS rate. However, the R-value is not affected that
much in this case.

Finally, when ISeg, HMM, and gaze are combined, the highest results for CDR (79.58%)
of all conditions are obtained. This can be seen in Table 3, for the condition ISeg+HMM+gaze.
Again, this produces a higher OS rate. The F-score for this condition stays the same (0.67%);
however, the R-value is decreased because of the higher OS rate.

The results of adding gaze data to ISeg or ISeg+HMM show that weights generated from
the gaze data do indeed provide a significant performance boost to the ISeg algorithm. The
F-score and R-value in Table 3 show that some unwanted boundaries are also generated. One
reason for this behavior is the internal working of the ISeg algorithm, as it is very sensitive to
changes in intensity level [12]. By multiplying the spectrogram with the gaze data weights, the
intensity values of the spectrogram change, affecting the segmentation produced by the ISeg
algorithm. Also, only the fixations of the spectrogram region were considered for generating
weights, but in practice the boundaries can also be placed by fixating on the other regions of the
Praat GUI.

5 Conclusion and future work

In this paper, we have presented a gaze based modality which can be combined with existing
segmentation techniques to improve the quality of automatic segmentation. In order to imitate
the way human experts visually process the spectrogram representation of a speech signal during
segmentation tasks, we used and analyzed suitable gaze data obtained with an eye tracker.

Furthermore, we converted the gaze data into weights and used them in an image based
segmentation approach. The weights are based on the amount of time the phoneticians spent
on a specific speech segment. To evaluate the usefulness of this new modality, we combined it
with ISeg and HMM based segmentation. From the results, it is clear that combining the gaze
data with ISeg improves the results over the baseline.

We plan to extend this research, with the goal of improving automatic speech segmenta-
tion by systematically identifying signal regions that are problematic to reliably segment in a
conventional, acoustics-only approach. There are also potential applications in gaze based as-
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sistance during manual segmentation tasks. To use the system for such a task, we will need to
obtain a gaze “profile” of the phoneticians during segmentation. This could be done by train-
ing a neural network model on the multimodal corpus and generalizing the gaze behavior of
phoneticians, although this might also require us to record more training data. Without such a
trained model, it would be difficult to apply the approach to new speech data.
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