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ABSTRACT

‘Key Features' is a term coined to indicate blocks
of continuous speech which have been recognised
with absolute certainty by computationally
efficient techniques as having some particular
acoustic~phonetic attribute. Key feature
rec9g?ition is also charactgrisea by no false
positives although certain blocks having the
features might be missed.

This paper describes the use of the concept of key
features as a pivotal element in a project to
build a dictation machine accepting continuous
speech. A method of locating key features such as
voiced speech, voiceless speech, stressed speech,
nazlsals, liquids, plosive bursts, intervocalic
VO}ced plosives and fricatives, voiceless
fricatives and the phoneme /s/ is bresented and
the results of attempting to locate these key

féatures in a passage read by several speakers are
yiven.

INTRODUCTION
In this paper we address the notion that blocks of
continuous speech which are recognised with
absolute certainty as having some
‘.acoustic-phonetic attribute can be used as an
lntefgral part of the primary control mechanism of
:fl dictation machine accepting continuous speech
input. After describing the role of the key
feature concept in an expert's reasoning about an
unknown speech passage we g0 on to describe how
reasoning using the key feature concept might be
uged in building a dictation machine. We then
give one method of locating a set of key features
and discuss the usefulness of this set of features
for the dictation machine design.

) A WAVEFORM-READING EXPERT
The aim of the FOPHO continuous speech recognition
project [l] is to build a speech recognition
sy§tem using expertise-capture techniques - jin
this case the expertise being captured is that of
a phonetician transcribingy a foreign language
while it is customary to think of zh.
phoriletician 's expertise as being primari le
auditory expertise, experiments by Cole, kudnickyy
Zue an_d Reddy (2] have demonstrated that cert i'
phoneticians and speech scientists h:vn
considerable visual expertise in that th .
‘read’ spectrograms. In interviewin Sexpert

) z 9 the expert
phoneticians working on the FOPHO pProject anoth
area of visual expertise was explored = that 2;

'reading' waveforms {3]. Une of the expert
phoneticians (P.R.) was particularly good at this
and although he generally could not produce a full
phonetic transcription of what was said from the
waveform alone, he could provide a remarkable
amount of information about the phonetic content
of the waveform in question. Presented with a
section of waveform from an unknown utterance F.R.
would first make a series of categorical
statenents about portions of the wavetorm which he
could immediately identify as having some
garticular acoustic-phonetic teature. “he
features identified were sometimes phonemes; a
very easy to identify such phoneme beiny /s/, but
very often they were broader phonetic teatures as
as .'voiced', 'nasal' or ‘'plosive burst's. After
making categorical statements FP.R. would go on to
make a series of more tentative statements about
the‘wavefom indicating phonetic teatures that he
believed were probably but not certainly present.
however, it is P.R's categyorical labellings that
are ?f most interest in this paper. The wavetorm
reading expertise was encapsulated in a set of
pro<‘:lu<.:tion rules which were based on a very
efficient signal processing technique (described
below) which addressed the same wavetorm primitves
that:_ the phonetician wused in providing the
ratllox.\ale for his categorical labelling
decisions. Initially these rules -were merely
added to the FOPHO system's knowledge base.
However later it was decided that this set of
categorical rules might be useful in the primary

control mechanism of a dic i
tation syst we
proposed building. ystem that

N A DESIGN FOR A DICTATIUN MACHINE
The  Proposed dictation machine, Dicma is a
machine designed to be usea tor cc;mmercial
correspondence where a high proportion ' of the
Z:rc}s are predictable. Thus the dictation machine
81gn can make heavy use of a modified word- and
pnrase-spotting technique. The top-level concept
postultatgd in the Dicma design is that the ‘pure’
;zccgnltlon par?: of the system should produce some
d'rm of phonetic encoding (the form of which 18
e:::;::ied 1;elolw) of the input speech and that this
Sheodd 9 should then be searched for indications
: 11 esen?e of words and phrases which are likely
s:cho“fj\.l}fellzt t._he dictated material.  Sources Of
typedoin k); wo :ccur words are extrapolations from
yped ywords and studies of the particular
hoted 5 past c?rrespondence. (For more details of
m diiia:szd in the prediction of likely words in
ed passage see [4]). After possible
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locations of predicted words have been found the
presence of these words can be verified or
rejected using a test-and-eliminate strategy. A
predictive parser can then be wused to predict
grammatically suitable fillers for the undecoaed
speech between veritied words. In their turn
these fillers can be acepted or rejected using the
test-and-eliminate strategy.

The basic idea here is not new. The notion of
predicting and then searching for likely words in
a section of speech was fundamental to the ARPA
speech understanding projects [5]. What is being
postulated in this paper however is that these
ideas can, by a judicious choice of reasoning
technique, be pushed a lony way for relatively low
computational effort and thus enable the
production of efficient, low-cost, special-purpose
speech recognition devices.

In order to maximise the efficiency of operation
of the dictation machine described above we
adopted a new structure for the output from the
'pure’ speech recognition system component.
Generally FOPHO has run according to what is quite
a common top-level approach to continuous speech
recognition, that is a hierarchial refinement
scheme derived from formal phonetic classification
theory. BAn example of this approach is to first
classify an unknown sound as either sonorant or
non-sonorant, then if it is non-sonorant to see if
it is continuant or interrupted and so on. A
detailed exposition ot this approach has been
given by De Mori, Laface and Piccolo [6]. This
approach has been generally accompanied by some
probabilistic or fuzzy weighting scheme for
estimating a degree of belief in any particular
classification at any particular level in the
hierarchy. However the hierarchical-classification
~cum-fuzzy-weighting scheme does not allow us to
take advantage of strong categorical inferencing
techniques. The issue here is that recognising a
particular feature in a stream of speech with near
100 per cent certainty is not nearly as strong a
statement as saying that a particular feature has
been recognised categorically as being that
particular feature. on the Dbasis of this
observation we have decided to use two types of
reasoning mechanisms in the dictation system = one
categorical (or pattern-matching) and the other
fuzzy. cCategorical reasoning is to be used in
likely-word location and a mixture of categorical
and fuzzy reasoning is to be wused in the
test-and-eliminate strategy. This approach is
essentially similar to the control mechanism used
in many medical expert systems [7].

AN ADEQUATE PHONOLOGICAL ENCODING
To wuse ,(categorical reasoning tor likely-word
location the continuous speech input to the system
and the set of likely words that are to be
Searched for must both be encoded according to
some robust and adequate phonological encoding
scheme. It must be robust in the sense that talse
fmcodings must not occur and it must be adequate
in  the sense that too many ambiguous word
locations must not occur. But what constitutes a
Suitably robust and adequate encoding? First we
discuss what might constitute an adequate

phonological encoding. Various recent studies on
the distributional characteristics of word cohorts
that result from encoding complete dictionaries of
words according to various phonological encodings
(see [8] for an overview) arxe relevant to this
problem. Lai and Attikiouzel [9] carried out a
cohort study of Australian knglish using all the

conplete (51,018) words ot the Macqguarie
Dictionary [10] as their source. They found that
for the various phonological encodings they
studied (two of which are close to an encoding we
consider below) the expected cohort size is quite
small (less than 5) for words of phonetic lenyth
seven or greater, certainly small enough to be
easily distinguishable with the addition of
simple verification techniques. However for words
of phonetic length two to six the expected cohort
size is rather too high to be easily settled with
verification techniques, particularly when it is
remembered that the problem we are consideriny is
that of finding words in a continuous stream of
speech where false positives can occur across word
bounaaries.

accordingly we postulated that a small, but likely
vocabulary (such as we would have if we knew the
most conmonly-occurring words in a |user's
correspondence) would give rise to a manageable
set of words which, when searched for in the input
string, should lead to a correct decoding of a
faiy percentage of the input. %o investigate this
we carried ouc a word-frequency study of 33
consecutive letters written by the first author.
it was tound that' 83 words could be classed as
high-frequency words [1l1l]. Under quite a weak
phonological encoding such as the following:
(voiced), (unvoiced), {(vowel),
(nasal), (/s/). (/p/)s (/2/), (/K/),
the 83 high-frequency words gave rise to 56 words
cohorts, 45 of which were unigue. The largest
cohort was a five word cohort of phonetic length
two. The 56 cohorts were searched for (using tast
biblioyraphic search techniques [12]) in ten test
letters also extracted from the writer's
correspondence and also encoded using the
eight-class phonological encoding. whe
high-frequency words accounted for b57% of the
words in these letters. A ‘best interpretation'
of the search on a particular letter was aetinea
to be a reading of the letter that was obtained by
assuming that that locations of words of high
phonetic length were more likely to be correct
than locations of words of low phonetic length.
word locations were not allowed to overlap. Wwith
this notion of interpretation, 52% (or 73% if the
sinplifying assumption of exact phonetic length is
made) ot the high-frequency words that occurred in
the test letters were in the best interpretations
of the letters and every high-trequency word was
at least in the best or a second-best
interpretation. This result together with the
smallness of the cohort sizes involved means that
even with this weak phonological encodinyg the
verification task to check for correct words and
eliminate false positives is quite
straightforwaxd. Also as there were no talse
positives for words of phoentic length six or
greater it is probably unnecessary to apply
verification to words of this length. Thus for
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the environment in which the proposed dictating

machine would operate only quite a weak
phonological encoding would seem to be adequate to
ensure computational efficiency in the operation
of the first phase of the machine. but the
question that still needs to be addressed is: can
such a phonological encodinyg be achieved robustly
for continuous speech?

In the next sections we address this question;
first describing the role that key features could
play in providing this robust encoding, then
g%ving a means of finding key features and tinally
discussing the results of running key feature

rules over passages of speech read by several
speakers.

ABSOLUTL KEY FEATUKES

What we call a key feature is a block of
continuous speech which has been recognised with
absolute certainty as having some particular
acoustic-phonetic attribute. In particular,
although some sections of speech having this
acoustic-phonetic attribute may be missed after
the application of key feature labelling rules,
one can be certain that there are no talse
positive labellings, i.e. that no block has been
incorrectly labelled. For the categorical
réasoning phase of the operation of the proposed
dictation machine however we need to find a
sub-set of the key features that has the
additional property of no false negatives, i.e.
all blocks of those teatures will be found. We
will reter to these as absolute key teatures.

Generally however it should be noted that the
indisputable certainty of a key feature label
enables immutable anchor points to be established
in speech. &around these anchor points a range of
hypotheses suggested by phoneme or higher-level
prediction rules can be tested using either
categorical or fuzzy inferencing. The key feature
labels also provide a context which allows
cogtext-dependent recognition inferences to be
made.

LOCATING KEY FEATURES
When giving explanations for his categorical
labellings of printed speech  wavetorms the
phonetician P.KR. generally couched them as as
arguments about two waveform primitives -
zeroTcrossings per unit time and wavetorm
amplitude. We developed a set of simple wavetorm
analysis techniques which efficiently produces a
m?asure of these two waveform primitives
simultaneously. The fundamental procedure of this
technique can be described as follows:
The sum of the absolute values of the
valley and peak wavetorm amplitudes for
each adjacent valley=-peak pair is
c§lculated as a runction (called W1l)y ot the
t}me mid-way between each valley-peak pair.
By regeating this procedure twice on the
successive outputs from the procedure we obtain a

function (W3) which is similar to the wav
aveform

A second procedure is derived from Wwl. It is
referred to as Ml and is obtained by taking the

inverse of the time between adjacent Wl points as
a function of the mid-point in time between those
points. This function can be displayed in «
frequency versus time gyraph.

“he third style or procedure used is a tunction
wbich averages the Ml points tor pre-defineq
winuow sizes and sampling rates. This function
gives (with appropriate choice of sanpling rates)
a rough guide to various formant trajectories
{13]. Graphs of W3 ana averaged Ml (for a
sampling rate of 20,000hz) for a female speaker
saying "insects may be" can be seen in figure 1.
The three procedures described above are all
computationally extremely fast.

Several key feature location rules were written
which were based on the output from these
procedures but which reflected the categorical
la?ellings of the waveform-reading phonetician.
This set included rules for the following phonetic
labels 'heavy stress', 'voiced', 'voiceless
?Peecn', 'nasal', 'liquid', ‘voiceless tricative',
'lntef—voqalic voiced plosive or fricative',
plosive burst', ‘syllabic peak', 'not high tront
vowel' and '/s/' and for various broad vowel
cateyories. These rules were written in what is
essentially a production rule form. For example
the rule for a nasal is the following:

label

name H nasal,

wave. H speech,

reguires : lMl(20000)],

association : M1(20000) is long low awplitude
- T (3,300)

?hese rules are written in a special languaye
tront-end to Prolog. The declarative style of the
{gles makes them easy to construct and de~buy.
Figure 1 is an example of a typical screen display

™1

wovw Tty 31 ammple stert 6000 length 18060
i [w1¢: a0
N tation :  myeor N
175008) sl lise smpl 1udet 3, 208) 31: U3 ampl(tude 7008
I
o) ~ at: plot W3,

::g:re l: Multi-window screen display tor key

eature ;ule sSystem. The top siynal processing
window .dlsplays averaged*® Ml; the bottom signal
brocessing window displays Ww3.

Key teatures are
marked by heavy horizontal lines i

n the top windowe
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seen during the running of the rules on a SUN
workstation. 17he central windows are used to
graphically display recognition results - the dark
lines in the centre show where the key features,
‘yoiced' and ‘'nasal' are located = and signal
processing results while the window in the
right-hand corner is the command window ana the
window in the left~hand corner is an editor
window, the presence of which allows for rapid
prototyping of new rules. The various key feature
rules written to date were tested on 32 speakers
(15 male and 17 female) readinyg lists of words and
on six speakers (three male and three tfemale)
reading a short reading passage. Cnly four
absolute key features were found - ‘voiced',
'voiceless speech', '/s/' and ‘heavy stress'. 92%
of the voiceless fricatives and 78% of all the
nasals present were located by the appropriate key
feature rules. Other key features were located
less than 50% of the time using such rules. For
key features that are not absolute key features
the results varied considerably from speaker to
speaker. In particular one of the speakers
reading a passage produced plosive bursts less
then 10% of the time. However it should be noted
that under the condition of stressea speech the
key feature ‘'nasal' is always located 1luU% of the
time.

A ROBUST PHONOLOGLCAL ENCUDING
¥rom these results it is clear that the current
key feature rules would not yield a very strong
phonological encodiny. ‘Whe best robust encoding
that could be got from the present versions or the
key feature rules is:

(voiced), (unvoiced), (stressed vowel), (/s/)e
.This encoding is even weaker than the eight-class
encoding discussed in a previous section.
Nevertheless even this encoding does not result in
an impossible number of cohorts particularly for
words of phonetic lenyth greater than six. Also
the fact that at least one key feature becomes an
absolute key feature in stressed speech suyyests
that several encodings should be used when likely
words are being searched for. rhus after all key
features have been found two phonological
encodings of the unknown passage of speech could
take place = one the phonological encoding for
stressed speech and the other the (weaker)
phonological encoding tor unstressed speech. The
words being searched for could be similarly
bi-encoded. First the stressed version could be
searched (this would be the raster and more
productive search) and then the second, weaker
encoding of the wunlocated portions could be
searched with the weaker encoding of the
searched-tor words. After that key teatures which
were not explicitly used in the two encodinys
could be wused to eliminate some talse word
locations. After this still, fuzzy veritication
strategies could be used.

Furthermore it should be emphasised that key
features do not have to be located by the means
given in this paper. Any speech segmentaton rule,
based on any form of signal processing, that
results in no false positives is a key feature
rule. Thus a re-examination of speech
segmentation studies would doubtless yield a wide

range of key teature rules some of which might be
absolute key feature rules and this might give
rise to stronyer phonological encodings for use 1n
the categorical reasoning process.

CONCLUSION
1n this paper we have argued that relatively iast
and unsophisticated speech processing should yield

reasonable recognition rules if categorical

reasoning strategies are used.
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