MisTHODS ‘OF SPEECH SIGNAL PARAMuYRIZATION BASED
ON GENERALIZING OF LINEAR PREDICTION

A.N. Sobakin

Moscow, USSR

ABSTRACT

The generalization of speech analysis aethod on the basis of
linear prediction reveals unused potential possibilities of this
sethod and permits to develope new algorithas of evaluating speech
signal paraaeters.

INTRODUCTION

Modern achievements in the sphere of speech analysis and synthe-
sis are mainly connected with the use of algorithes of speech sig-
nal parasetrization, that take into consideration in soae degree the
nature of speech productien.

According to Fant’s model (11, the speech production consists of
excitation signal transforeation by the linear dynamic systea (LDS),
which paraseters correspond to the state of vocal tract at the mo-
aent of articulation.

The change in the vocal tract state during articulation leads to
the LDS parameters modification.

The tracing of these changes is usually carried out by shitting
analysis window within which the LDS paraseters may be considered
to be sufficiently stable. The transfer function of such LDS
at the analysis interval has the form of fraction-rational function
nith zeroes and poles,

The signal at the LDS input is locked upon as a sequence of al-
ternating intervals, corresponding to voice or noise excitation.

The whole excitation signal in that case is odulated by the tise
envelope of the speech signal,

Linear prediction [2-8) as a method of speech signal analysis was
worked out on the basis of auch more sisplified pattern of speech
foreation, than one described above.The method is based on deriving
the LDS parameters according to the speech signal estimates, ignoring
transfer zeroes within the analysis interval, The most simple cal-
tulation formulas are obtained in the setrical space.

The quality of obtained LDS parameters estimates will essentially
depend on the location of the analysis window at the tise axis.

If the interval of analysis correspords either to an interval of noi-
se excitation or to an interval of free LDS oscillations (for exanple,
the interval of vocal cords closure) then it is possible to show,
that in that case the estimates will be unbiassed,

But in case when the analysis interval contains one or several
pitch irpulses, LDS parameters estimates will be biassed, It is expla~
ined by the misagreement between the analysis method and the speech
signal structure, for example at the voiced intervals of speech,

Thus. the problem of more complete agreement between the analysis
sethod and the -speech formation pattern is an urgent jssye,

According to the said ashove, it seems perspective to exaaine pos-
sible linear prediction generalizations, introducing additional pa-
raneters and characteristics of the sethod. Additional degrees of
freedom may he used for more complete agreement between the methad of
analysis 3nd the speech signal structure,

The generalization of linear prediction lesds to the algoritha
aodifications of speech signal parameters estimates, and, in the long
run to ohtaining new parasetrical spaces for analysis and speech re-
cognition.

GENERALISATION OF LINEAR PREDICTION

The essence of linear prediction is nonrecursive p-order filter
that transtoras the speech signal counts [x) into residual sig-
nal elnl, using weight coefficients (& }:
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Buality functioral is also generalized (5), that allcws to chopse
ditferent metric spaces for ectimation of analysis parameters,

" As seen from (3),the original transformation {1) was formed on
linear delay operators,that reprecent the class of physically reali-
zable linear systems with constant parameters.Principally,it is pos-
sible to substitute the original delay operators for 2 set of any
stable operators U U ,...,U from the class indicated.

21 p
Then proportion (3) is transtormed into corresponding cascade
fore as follows ¢ ‘

y Inl=U {y [oD), k=B,1,...,P: (6)
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where y [nl=xlnl,
-1

Each linear operator (&) is determined in the frequency sphere by
the transter function of fraction - rational type.

According to the speech signal physical characteristics,the choi-
ce of transter function parameters allows to change in necessary di-
rection the structure and features of linear trancformation (1),

Thanks to that,the agreement between algorithe analyses and dyna-
nic speech characteristics will be achieved.

The cagcade form {6) of transformation (1) also allows examine
the corresponding generalized structures of lattice filters (7] on
the basis of linear operators specifically chosen,

It is worth-while to note ,that besides cascade form (6) ,the
parallel fora of the speech signal preliminary transformations can
be easily formed on the basis of indicated set of linear aperators,
Each of the output signals y [n) is obtained as the result of appli-

k
cation the corresponding operator directly to the input signal xinl
The condition (2) influences the structure and features of fil-
ter (1) not to a lesser degree.

This linitation for parameters of the filter was introduced to

eliminate zero solution during the search for quality functional ai-

nisua. In essence it can be considered as the constraint on vector a
coordinate magnitude in (p+1}-dimentional space of parametres.
In general,this constraint may be written down as follows:
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where f{)is an arbitrary function of (P+1) variable.

The only condition of choosing the function is zero solution eli-
sination in the probles under consideration.Thus,the equation (7) in
(P+1) space of parameters determines a surface,not passing through
the coordinate beginning.

The search for an optimal vector of coefficients 3 with con-
opt

. straint (7) may be realised on the basis of generalizéd quality func-

tionai £ (a,b):
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where b - the Lagrange factor, fros the set of real numbers,
R,r - an integer,
The value of "r” in (B) determines the choice of the aetric spa-

te L , where the search for optisal vector of parameters @ is

2 opt
carried out.

Lagrange factor b increases by one the amount of target unknown
values and reduces the problem of conditional extremus searching to
the search for unconditional extremus for quality functional (8).

As before,condition (4) in which functional (8) was used instead

of functional (5) ,determines vector a  and factor b in expanded
opt
(P+2)-disentional metric space L =L #R .
rdor

Proceeding from condition (4) of the quality functional minimus
(8) ,the task of searching f#ilter (1) paraseters may be presented as
generalization of linear prediction sethod,

The particulare choice of basic operators () of liaiting function
(7) and characteristical constant determines in each case different
algorithes of speech signal analysis and different parasetric spaces
for their description,

ON THE CHOICE OF BASIC LiNEAR OPERATORS,
LIMITING FUNCTION AND METRIC SPACE.

Arong three components,that determine the particulare fora of analy-
sis algorithe in the formulated task,the aost promissing and the most
difficult at the sase time is the problem of the best choice of basic
linear operators {6},

#s in classical methods of digital filters design (B8], thie complexi-
ty of this probles for the class of linear systeas with infinite impulse
responce (]IR-filters) is increasing as compared to the choise of linear
operators from the class of linear systems with finite impulse response
(FIR-filters),

Let's confine to setting a sathesatical problem of choosing ope~
rators {4) froe the FIR-systea class with impulse responses of p-length,
In that case the set of transformations (6} is represented by a linear
equation system,that is formed with the help of square B matrix of
(P+1)#(P+1) size, .

B matrix lines are the impulse responses of the basic operators,de-
rived from the above mentioned class of the FIR-systems.

In that case,the set of operators {6) in parallel form is expres-
sed by delay operators {3),and the corresponding vectors of coeffi-

cients a and ¢ for both variants are related to each other by the
follomwing linear equation systea:

CER e )
fan accent means transposition),

in case of B satrix inversion,paraseters a and c are equivalent ac-
cording to the information theory,

However ,the latter doesn‘t mean their equivalence from the view-
point of their optimue coding for speech transmission and recognition.
Thus,the probles of the best choite of basic FIR-systess is foraulated
as the problem of transformation search (9) (i.e. B-matrix},that
brings about the improvesent of estimated paraseters in the systess
of speech transsission and speech recognition.The B satrix choice
allows to take inte account more completely the speech signal structu-
re and features.

Using the linear operator theory in Gilbert spaces [9) it is pos-
sible to approximate any linear operator from the 1IR -system class
by a linear operator from the FIR-systes class.The probles of the op-
timue choice of basic operators from the class of 1IR-systess may be
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reduced to the above formulated task of FIR-systess .

it doesn't seem possible to exasine different variants of condi-
tion (7) fuly enought. Let's tonfine ourselves to 2 types of functicn
o,

For predicting sethods,the choice of function 0.} 1n the fora of

scalar product of weight coefticients E by parameter vector 8 is
natural generalization of constraint {2i:

flasig, a0 -1:=40. (18

Equation {18 with ainus one in the left part deteraines a hyperp-
lane in the space of paraseters ,that doesn’t pass through the coor-
dinate beginning.

Interesting results are obtained if a square fors of the parameter
vector is taken as the second lisiting function:

fa)eDa 8 -12 8 ()

Equation (11) deteraines the second order plane in the paraneter
space with the help of D satrix of (P+1)#{P+1) size.

In both cases, the choice of either particulare vector g for condi-
tion {18) or D matrix for condition (11} gives aditional degrees of
freedom, helping to detersine the structure and features of the cor-
respanding estisation algoriths of the speech signal paraseters.

The choice of metric space L ,i.e. the choice of characteristical

. r
nuaber r ,also determines the structure and features of the obtained
algorithas,

The most developed and examined algorithas are the estimation algo-
rithes for squared quality criterion in setric space L {r=2),

: 2

Homever, the results of theoretical calculations and experimentallic]
researches show that modular criterion ir=1) has the advantages in the
speech signal analysis .For example ,single excitation puises don't
distore the target values of the LDS paraseters and the obtained para-
seter estimations are nonbiassed.

It seeas interesting to examine the sinisax guality criterion for
r= »and the obtained results of the speech signal investigation,
though there arises the necessity to use cosplex Remer algoriths

111 for estimating paraneters.

THE EXAMPLES OF ANALYSIS ALGORITHMS

In practice the determinating of functional extresum say be carried
out in two ways: either on the basis of the equation systes that is deri-
ved when the quality functional gradient is equal to zero or by adaptive
sethads [12] in the fors of consecutive approximations ta target para-
seters,

The adaptive methods are of the sost interest in the sphere of ap-
lied researches.

The systes of adaptive equations for detersining the LDS paraneter

ectismates in case when a-th coordinate of vector a is equal to one and
other coordinates are equal to zero,will look as follows:
A [neld=A [n)-g(ni¥e (n)¥y [nd, k=B .. -1 mtt 0,0 ,P; (12}

k k 1 k

where gin) is norsalizing multiplier,
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he vouation systesa (17) resinds of the system of adaptive equa-
tions for linear prediction based on the sethod of the least squa-
res 161.1n fact when the first coefficient is equal to one [a =1],the

8
forward linear prediction is obtained ,when the last coefficient is
equal to one {a =1} the backward linear prediction is obtained.
p

Thus,there exists a principal possibility to work out
filters {71 on the basis of generalized linear operators,

The adaptive algorithe obtained for a unitary U matrix will ditfer
$ros other known aethods of estisating in most degree.londition (11) in
that case will mean that the nors of coefficient vector is equal to ones

TPRTERN : (13
Equation {13) in parasetrical space determines a spheric surface of
an unitary radius,within which the search for quality functional extresus

is carried out,
The corresponding adaptation equaticns lock as follows:

A Int13=A [nl-ginile (n)dy [n3-bInl¥A In-11}
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The estimation of coefficient vector, obtained on the basis of
equations (13} and {14) is an approximated latent vector value of
covariation signal matrix y(81,y[13,...,yIn] that correspond to maxi-
pun latent value of this matrix, This algorithe differs from the
classical aethod of linear prediction.

Function e {n}, used in equations (12} and (14}, is identically
equal to residudl signal for squared guality criterion (r=2) and is
of the same sign as the residual signal for aodular quality crite-
tion tr=1). In these equations normalizing eultipliers gin) and g {n)

t
secure the convergence of successive iterations alnl to the L0§
paraseters optisal value, detersined by condition (4,

The initial value of target parameters in adaptive algorithes 12

and (14) may be equal zero.

CONCLUSIONS

Suggested generalization of linear prediction allows to develope
algorithes of the speech signal paraseters estimation, that ditfer
trom traditional ones.

Introduced constants of generalized method, at the stage of joint
onstraint of coefficients and at the stage of preliminary transfor-
sations as well, provide additional degrees of freedoe, that allow
nore cospletely take into consideration the current speech signal
characteristics.,

The given exasples of the adaptive algorithes show the potential
abilities of the examined above generalization of linear prediction
sethod, but it is evident, that the problem of the speech signal
parametrization is not solved yet.
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