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ABSTRACT 

This study focuses on the implementation of the phonetic effects of 
vowel accentuation in automatic speech recognition (ASR). The 
durational and spectral effects of accentuation are investigated separately 
by manipulating the transition and observation probabilities in hidden 
Markov models. We also attempt to implement the undershoot 
hypothesis [1], which describes spectral reduction as a direct 
consequence of shortening. Our findings support the widespread belief 
that the transition probabilities, which indirectly model durational 
effects, are negligible, and that the distinction between accented and 
unaccented vowels is determined by the observation probabilities. 

1. Introduction 

Accented and unaccented vowels differ in both durational and spectral 
properties [2]. The undershoot hypothesis [1] describes undershoot of the 
target position for unaccented vowels as a direct consequence of vowel 
shortening. More recently [3], undershoot of the target position was 
described as an effect of speaking style and conversational demands. Since 
the conversational demands on discriminability are high for accented parts of 
the utterance, which carry the main information, these must not be reduced, 
while unaccented parts of the utterance may show a high degree of 
undershoot.  
The importance of accentuation effects on vowel realisation are evaluated in 
a vowel recognition experiment by separately modelling accented and 
unaccented vowels and comparing the results with those when vowel models 
pooled for accentuation are used (section 3.1). In section 3.2 the undershoot 
hypothesis is implemented by shortening the self-loop probability of the 
middle state of each hidden Markov model (HMM) for unaccented vowels. 
Since this decreases the recognition rates, we have investigated the effects of 
separately modelling durational and spectral reduction in HMMs (section 
3.3). Finally, we shall show in section 3.4 that the degree of accentuation can 
be determined better than we should predict on the basis of the frequency of 
occurrence of accented and unaccented vowels. 

2. Method 

As training and testing material we used the vowels in the prosodically 
labelled part of the KielCorpus of German spontaneous speech [4] (sampled 



with 16kHz/16Bit) – 88 minutes of 7 appointment-making dialogues of 32 
speakers. Since the behaviour of vowel monophthongs in accented and 
unaccented conditions is well understood and, particularly, since we want to 
attempt to implement the undershoot hypothesis, which was developed on 
the basis of monophthongs, only these are used in our experiments (29,565 
tokens). Four levels of accentuation have been manually labelled in the 
database: 0 for 'unaccented', 1 for 'partially accented', 2 for 'accented' and 3 
for 'reinforced' vowels. These levels constitute sentence level prominence – 
not lexical stress, although this is obviously implied by accentuation (the 
reverse is not true). Although all vowel monophthongs were used in the 
experiments, only those vowels were considered for interpretation which 
provide enough data for testing and modelling our ideas. Vowels which have 
less than 90 occurrences in either the accented or unaccented category were 
excluded from the presentation (all front rounded vowels, /@/ and /6/). 
The speech signals were parameterised using a 25.6ms Hamming window 
with a preemphasis of 0.97 and step size 5ms. For each frame 12 mel-
frequency cepstral coefficients (MFCCs), their first derivatives and energy 
were extracted. The experiments were performed using the HTK toolkit [5]. 
Only self-loops and transitions to the next state were allowed in the HMMs, 
which consisted of 3 states. For training only the first six out of the seven 
dialogue games were used, testing material consisted of the seventh, i.e. 
training material as well as testing material contains speech samples of the 
same speakers. By using the same speakers for training and testing, speaker 
variation is better modelled. This allows us to concentrate on the effects of 
accentuation. 
Our experiments differ from standard ASR experiments in that no lexicon or 
language model was used. Phone classification rather than word recognition 
was performed to ensure that we isolate the acoustic influence of 
accentuation on recognition.  

3. Experiments 

3.1. Accentuation and baseline experiments 

In an accentuation experiment (Acc4) separate HMMs with 4 mixtures in 
each state were trained for each of the accented (levels 1, 2, and 3 
accentuation labels) and unaccented (level 0) vowels. The four mixtures 
were used to model variation due to other factors than accentuation. 
As a baseline for comparison, two experiments were carried out in which 
one overall HMM was trained for each vowel, i.e. the vowels were pooled 
for accentuation. In the first baseline experiment (Base4), four mixtures per 
state were used, while in the second (Base8) eight mixtures were used. 
The results from the accentuation experiment were expected to lie between 
those from the two baseline experiments: on the one hand, the Base4 
experiment has to model the complete variability in the signal with only four 



mixtures per state, where the Base8 experiment has double the number of 
mixtures to model the different realisations of each vowel. In the Acc4 
experiment, the total number of mixtures across all the vowels is the same as 
in the Base8 experiment, but by separately modelling accented and 
unaccented vowels, four of the mixtures are explicitly assigned to the 
accented, the other four to the unaccented vowels. Since this may be less 
effective than when the eight mixtures are left free to model any source of 
variability in the signal, the Base8 experiment sets the recognition ceiling for 
the Acc4 experiment. On the other hand, since in both the Base4 and the 
Acc4 experiments we have four mixtures per state, but fewer data (less 
variability) are modelled by each HMM in the Acc4 experiment, the Base4 
experiment should determine the minimum recognition. 

 a   I a:  i:  E e:  O U o:  u:  Tot: 
Base4 42.3 42.8 52.8 69.7 60.3 65.4 51.5 56.2 39.1 67.8 48.0 
Acc4 50.2 47.0 54.5 68.3 62.4 60.3 55.6 57.7 40.2 72.9 49.4 
Base8 49.1 49.4 51.6 71.5 65.4 60.7 52.7 64.3 39.5 64.6 50.8 

Table 3.1. Recognition results (total rates for all monophthongs) 

Recognition rates are shown in table 3.1. Please note that the recognition 
rates of Acc4 reflect recognition of vowel quality irrespective of degree of 
accentuation. Numbers in bold print indicate the highest recognition rate in 
this set of three experiments. Most vowels are best recognised in either the 
Acc4 or Base8 experiment, as was expected. Five of the vowels are best 
recognised in Acc4, four in Base8. The fact that dividing the vowels into two 
accentuation groups does not lead to a general deterioration of the 
recognition rates shows how important a factor accentuation is in 
determining variability among the vowels. 

3.2. Modelling undershoot 

Since there is a significant difference in the durations of the accented and 
unaccented vowels and since the undershoot hypothesis predicts the 
automatic spectral reduction due to time constraints, a first attempt to 
implement the undershoot hypothesis was made by deriving HMMs for 
unaccented vowels from accented ones. Unaccented HMMs were derived by 
decreasing the self-loop probability of the middle state of the HMM for the 
corresponding accented vowel (and increasing the exit probability of this 
state). This allows for modelling a reduction in the duration of the vowel and 
can at the same time model spectral undershoot. We argue that modelling 
durational effects by changing the transition probabilities is admissible, since 
there is a significant correlation between mean durations and mean self-loop 
probabilities (r=0.969).  
Experiment AbsUS strongly reduces the self-loop probability of the middle 
state of all unaccented vowels to 20%. In a second experiment (RelUS) the 
self-loop probability is reduced according to the relative reduction in 



duration. The proportions of the mean vowel durations of accented to 
unaccented vowels were significantly correlated (r=0.901) with the 
proportion of the mean self-loop probabilities in the HMMs. The self-loop 
probabilities of the middle state were shortened using the regression formula 
y=0.72+0.28*R (R = durational proportion of each accented vowel to its 
unaccented counterpart). The self-loop probability for unaccented vowels is 
calculated as pL2*y

3,, (pL2 = self-loop probability of the middle state of 
accented vowels). 
Vowel recognition rates were equally low in both experiments (see table 3.2) 
compared to Acc4, in which accented and unaccented vowels were modelled 
separately. This shows that the chosen implementation of the undershoot 
hypothesis cannot be applied to derive unaccented from accented HMMs. 
Interestingly, the recognition rates of the two undershoot experiments are 
comparable, although the differences in the self-loop probabilities of the 
middle state were enormous (mean probability for AbsUS 20%, for RelUS 
70%). This leads us to believe that transition probabilities only play a minor 
role in the recognition of accented and unaccented vowels. 

3.3. Influence of transition and observation probabilities 

In a third set of experiments we try to reveal the influence of transition and 
observation probabilities on the recognition rates. As in the undershoot 
experiments presented in the previous section, HMMs for unaccented vowels 
were derived from those for accented ones. 
In experiment Trans this is done by replacing the transition probabilities 
trained for accented vowels with those trained for unaccented vowels in 
Acc4. Likewise, in experiment Observ the observation probabilities trained 
for accented vowels were replaced with those trained for unaccented vowels 
in Acc4 (see also table 3.2). 
Changing only the transition probabilities (Trans) leads to similarly poor 
results as in the undershoot experiments, again showing the relative 
unimportance of the transition probabilities for the recognition of accented 
and unaccented vowels. Replacing the observation probabilities to derive 
HMMs for unaccented vowels from those for accented vowels (Observ) led 
to comparably good results as Acc4. 

Exper. Acc-model Unacc-model rate 
Acc4 Acc-vow Unacc-vow 49.4 
AbsUS Acc-vow Acc-vow, but self-loop prob. of 2nd state red. to 

20% 
41.7 

RelUS Acc-vow Acc-vow, but self-loop prob. of 2nd state red. 
relative to dur. proportion of acc : unacc  

41.9 

Trans Acc-vow Acc-vow, but transition prob. of unacc-vow 41.7 
Observ Acc-vow Acc-vow, but observation prob. of unacc-vow 49.1 

Table 3.2. Recognition rates for all accentuation experiments 



3.4. Accent Recognition 

We have modelled accentuation in ASR, because it is an important prosodic 
means to transport information structure. In experiment Acc4, all accented 
vowels (except /I/ and /O/) are recognised better than unaccented ones (not 
shown in table 3.1). This is what we expected given the unreduced forms of 
accented vowels. Although considerable overlap should be expected between 
accented and unaccented vowels due to other sources of variation, the accent 
recognition rate is 59.2% for accented and 72.1% for unaccented vowels. 
This compares favourably with chance level, based on the frequency of 
occurrence of accented and unaccented vowels, which is 36.3% for accented 
and 63.7% for unaccented vowels in our corpus. 

4. Discussion 

It is shown that dividing our corpus into accented and unaccented vowels 
(Acc4) leads to results which are comparable to those of modelling the data 
with the same number of mixtures, but leaving it up to HMM how the 
variability in the signal is modelled (Base8). This proves the importance of 
accentuation as a source of variation in the signal. The advantage with a 
controlled splitting of the data is that we also obtain information about the 
degree of accentuation, which can be used for higher-level processing.  
Table 3.1 shows that recognition rates decrease when we try to derive 
models for unaccented vowels from accented models by simply decreasing 
the self-loop probability of the middle state in order to implement the 
undershoot hypothesis. This may be due to the fact that the states in a HMM 
are related to, but certainly do not exactly correspond to phonetic 
“categories” like transitions and steady states. A different type of HMMs 
which does not model the datapoints as independent observations may be 
more appropriate for this purpose. Further, both methods of reduction of the 
self-loop probabilities of the middle state (AbsUS, RelUS), performed 
equally poorly. This led us to believe that transition probabilities only play a 
minor role in recognition of accented and unaccented vowels. 
The third set of experiments, in which HMMs for unaccented vowels were 
again directly derived from those for accented vowels, corroborates this 
hypothesis. When unaccented vowels are modelled by replacing the 
transition probabilities by those from the unaccented vowel HMMs in Acc4 
(Trans), this leads to an equally poor performance as the undershoot 
experiments. Replacing the observation probabilities with those from the 
unaccented vowels to create HMMs for unaccented vowels (Observ), 
however, leads to recognition rates comparable to those of Acc4, in which 
both the observation and the transition probabilities were different for 
accented and unaccented HMMs. Therefore, only the observation 
probabilities seem to be of importance in modelling the effects of 
accentuation on vowels. In so far, our findings deviate from those of 



experiments on speaking rate [6], where fast speech was successfully 
modelled by increasing the exit probabilities (= decreasing the self-loop 
probabilities) of phones spoken at a normal rate. 
Normally, human listeners use multiple cues to recognise whether a word is 
highlighted or not. We show that accent can be predicted correctly to 67.4% 
from the vocalic portions only. Information about accentuation may be 
usable for “higher-level” linguistic processing, such as decoding information 
packaging, resolving lexical and part-of-speech ambiguities. 

5. Conclusion 

Durational and spectral reduction is caused by deaccentuation, and is 
explained by a greater amount of undershoot. As was shown, this cannot be 
modelled by simply increasing the transition probabilities of the middle state 
of HMMs for vowels (at least not for the type of HMMs used here). It was 
shown that transition probabilities in general cannot model the effects of 
deaccentuation and that spectral properties are decisive in recognising 
accented and unaccented vowels.  
Being able to determine accentuation is of great advantage for subsequent 
linguistic analysis. Since distinguishing accented and unaccented vowels in 
hidden Markov modelling does not deteriorate recognition results, this 
approach should be preferred over models with simply more mixtures to 
model the variation in the signal. 
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