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Abstract
This study investigated whether German vowels differ sig-

nificantly from each other in mel-cepstral distortion (MCD)
when they stand in different information density (ID) contexts.
We hypothesized that vowels in the same ID contexts are more
similar to each other than vowels that stand in different ID con-
ditions. Read speech material from PhonDat2 of 16 German na-
tives (m = 10, f = 6) was analyzed. Bi-phone and word language
models were calculated based on DeWaC. To account for addi-
tional variability in the data, prosodic factors, as well as corpus-
specific frequency values were also entered into the statistical
models. Results showed that vowels in different ID conditions
were significantly different in their MCD values. Unigram word
probability and corpus-specific word frequency showed the ex-
pected effect on vowel similarity with a hierarchy between non-
contrasting and contrasting conditions. However, these did not
form a homogeneous group since there were group-internal sig-
nificant differences. The largest distance can be found between
vowels produced at fast speech rate, and between unstressed
vowels.
Index Terms: information density, phonetic encoding, mel-
cepstral distortion

1. Introduction
Linguistics has borrowed concepts from information theory [1]
to explain differences in linguistic encoding. These concepts
quantify the amount of information passed through the channel,
also called information density (ID), as well as the channel ca-
pacity in communication processes. In recent years, numerous
studies have shown that ID has an impact on linguistic struc-
tures on different linguistic levels, see [2] for extensive review.

Phonetic structures in high ID contexts are increased, while
reduced phonetic structures are usually found in low ID con-
texts. Easily predictable vowels are less dispersed than vow-
els that are less predictable [3, 4]. Vowel dispersion is de-
fined as the Euclidean distance between the average centre of
the vowel space and formant values for each vowel [5]. This
widely used measure includes formant measurements and ex-
tensive data cleaning: Formant tracking is prone to errors, espe-
cially for vowels which have close first and second formants, or
close second and third formant. Manual verification of formant
data is prohibitive for the analysis of large amounts of speech
material.

As an alternative to vowel dispersion, the distance metric
mel-cepstral distortion (MCD) can be used. MCD is the Eu-
clidean distance between two vectors that describe the global
spectral characteristics. Here, we used Mel-Generalized Cep-
strals (MGCs) to describe the speech signal which is defined
as the inverse Fourier transform of the generalized logarith-
mic spectrum calculated on a warped frequency scale [6]. The
smaller the MCD values, the smaller the spectral distance be-

tween two speech signals. MCD only require a simple outlier
cleaning procedure, and they are less prone to errors in calculat-
ing than formants. Therefore, MCD is suitable for the analysis
of large speech corpora.

Prosodic factors, such as stress or speech rate, have an in-
fluence on the spectral characteristics of vowels. Vowels un-
der stress are more dispersed than unstressed vowels [7]. Also,
vowel dispersion shows a positive correlation with decreased
speech rate [8]. In the Smooth Signal Redundancy hypoth-
esis (SSR) prosodic structure holds a mediating position be-
tween information density and acoustic redundancy [9]. Highly
predictable words are usually unstressed, while unpredictable
words are prominent. Conventions and rules of prominence, as
well as predictability of linguistic units are language-specific.
Also, the influence of information density on phonetic encod-
ing density seems to be language-specific [4].

Vowel spectral characteristics are known prosodic corre-
lates but they are also sensitive to ID. In contrast to previous
studies, we aim to analyze the global spectral characteristics of
German vowels in different ID conditions. We expect that same
vowel identities differ in their spectral characteristics when they
are (a) in contexts with different predictabilities at the local level
(bi-phone surprisal) and at the word level, and (b) produced
with different prosodic structure (speech rate, and primary lexi-
cal stress).

We hypothesize that vowels in non-contrasting ID contexts
are more similar than vowels in contrasting ID contexts. Vowels
in high ID condition are the least similar in their spectral char-
acteristics compared to vowels in low ID condition. Regarding
the relationship between vowel similarity and prosodic factors,
we expect to find small distances between vowels in the same
stress and speech rate conditions. Consequently, vowels in con-
trasting stress and speech rate conditions are more distant from
each other than in non-contrasting conditions.

2. Method
2.1. Material

2.1.1. Speech corpus

For the extraction of MCD values the PhonDat2 corpus with 16
German native speakers (m = 10, f = 6) was used [10]. Speakers
read a corpus of 200 different screen-prompted sentences from a
train query task. They were asked to read carefully but fluently
as if in a real-life train query scenario. Canonical transcrip-
tion of the corpus including primary lexical stress information is
provided as part of the corpus. Audio files were downsampled
to 16 kHz and then filtered to 8 kHz cutoff frequency. Auto-
matic phonetic-phonemic segmentation was done using MAUS
[11]. For a subset of 120 files per speaker these forced-aligned
segment boundaries were manually verified by a phonetic ex-
pert for the subsequent data analysis. Only vowels in content



Table 1: Total number of MCD values per vowel identity.

Vowel No. of items

/@/ 180155 /i:/ 2751
/5/ 255957 /ı/ 97902
/ø:/ 489 /o:/ 4254
/œ/ 12921 /O/ 30976
/a:/ 103096 /u:/ 205
/a/ 91384 /U/ 105720
/e:/ 10636 /y:/ 518
/E/ 11548 /Y/ 11817
Total 940676

words were analyzed because content and function words show
different behavior with regards to information density [12]. Ta-
ble 1 lists the number of MCD values per vowel.

2.1.2. Language modeling corpus

Word and phoneme language models were based on the DeWaC
corpus which was preprocessed and normalized using German-
Festival [13]. The web-crawled corpus DeWaC contains 1.5
billion running words and about 8 millions types with a diverse
range of genres from newspaper articles to chat messages. Text-
internal criteria consist of removal of web-specific structures,
such as HTML structures or long lists. DeWaC was split into
training (80 %) and test corpus (20 %).

2.2. Data analysis

2.2.1. Speech data analysis

MGC representations and MCD distance metric were calcu-
lated using SPTK 3.7 [14] at the temporal midpoint of each
vowel. Before the distance metric was estimated, the optimal
feature vector size for the MGCs was calculated since speech
sound classes differ in this feature [6]. The optimal feature vec-
tor size for a respective data set can be estimated by using the
diagonal of covariance matrices. The variance of features at
size 5, 12, 19, 24, 30 and 39 were compared. For the vowels
in the current data set, vector size 30 had the lowest variance
(V ar(m30) = 6.434372e− 18). Further parameters for MGC
extraction were α = 0.42, γ = 2 and frame length of 512.
In a second step, the Euclidean distance between vowel vec-
tors for the same vowel identity in different ID conditions were
extracted. All MCD values larger than 10 were identified as
outliers and cleaned from the data.

2.2.2. Language model

The ID measure used in this study was surprisal which is de-
fined as S(uniti) = −log2P (uniti|context). This measure is
frequently used in psycholinguistic studies. It is relevant for hu-
man processing difficulty of linguistic units at phoneme, word,
and sentence level [15, 16]. Surprisal values were obtained from
a bi-phone LM using SRILM [17] including word and sentence
markers, and using Witten-Bell smoothing. Surprisal was log-
transformed due to positive skewness. One outlier was cleaned
from the data (S(X|X-1) > 25). Values were binned into three
equally large groups for low, mid, and high surprisal. In total,
there were six categories of surprisal context: high-high, mid-
mid, low-low, high-mid, high-low, and mid-low. Unigram word
probability (WP) was obtained similarly based on a word LM of
DeWaC, and binned in the same way as surprisal values. This

again led to six categories of unigram word probability, parallel
to those for bi-phone surprisal.

2.2.3. Prosodic model

The prosodic model that accounted for variability in the spec-
tral characteristics of vowels contained lexical stress informa-
tion and speech rate per sentence. Information on lexical stress
was based on the canonical transcription of PhonDat2. Vow-
els were marked as stressed when they were the nucleus of
the stressed syllable of the lexical item. Only primary lexi-
cal stress was included resulting in a three-level factor with
factor levels stressed-stressed, unstressed-unstressed, stressed-
unstressed. Each factor level denoted a comparative condition,
similar to the ID conditions. The speech rate for each sen-
tence was calculated as phonemes per second excluding pauses
using Praat [18], values were mean-centered, and then binned
into three categories (slow, normal, fast) to make data compar-
isons more feasible. In order to account for additional effects
of prosody on MCD, vowels in the first and last word of each
sentence were excluded from the analysis.

3. Results
3.1. Descriptive statistics

We expected to find a hierarchy in MCD values for vowels in
different ID conditions: Vowels in non-contrasting ID condi-
tions were expected to have small distances from each other re-
sulting in low MCD values, while vowels in contrasting ID con-
ditions were assumed to have larger distances from each other
in the spectral domain. For UNIGRAM WP we found such a hier-
archy with non-contrasting conditions low-low (m = -1.83, sd =
0.53), high-high (m = -1.79, sd = 0.54) and mid-mid (m = -1.78,
sd = 0.56) having lower values than the contrasting comparisons
high-mid (m = -1.77, sd = 0.56), high-low (m = -1.77, sd = 0.54)
and mid-low (m = -1.76, sd = 0.55). This hierarchy was not
replicated for MCD vowels in different SURPRISAL conditions.
Here, vowels in mid-mid SURPRISAL were the most similar (m
= -1.88, sd = 0.54), followed by vowels in mid-low ID condition
(m = -1.80, sd = 0.51), high-mid (m = -1.79, sd = 0.55), low-low
(m = -1.76, sd = 0.53) and high-low condition (m = -1.75, sd =
0.53), while same vowel identities in the non-contrasting con-
dition high-high SURPRISAL were the most distant from each
other (m = -1.74, sd = 0.58) (see Figures 1 and 2).

3.2. Linear mixed-effects model

Because of the specific domain of the speech data, word and syl-
lable frequencies of the PhonDat2 corpus were included as con-
trol factors. In that way, effects on the spectral vowel character-
istics that were due to corpus-specific frequency distributions
were identified. PhonDat2 was syllabified using the g2p tool
from BAS [19]. Frequency values were binned into three cate-
gories (low, mid and high frequency), and put into six compar-
ative factor levels, similarly to the ID values based on DeWaC.

There are only slight correlations between the predictor val-
ues with regard to the dependent variable MCD. WORD AND
SYLLABLE FREQUENCY of PhonDat2 are positively correlated
(r = 0.18) since both were extracted from the same data set.
WORD FREQUENCY of PhonDat2 and UNIGRAM WP based on
DeWaC, however, ere negatively correlated (r = −0.11) indi-
cating the domain-specific word frequency distribution of the
speech material. LMM were calculated using “lme4” [20] and
“lmerTest” [21]. The backward model selection method was ap-



Figure 1: MCD of German vowels in different SURPRISAL con-
ditions.

plied to identify the model that had the best fit for the data. The
dependent variable MCD was log-transformed due to positive
skewness. All categorical variables were treatment coded.

For the baseline LMM, the fixed effects SURPRISAL of the
preceding bi-phone, STRESS, SPEECH RATE, UNIGRAM WP,
PhonDat2 WORD FREQUENCY, and PhonDat2 SYLLABLE FRE-
QUENCY, as well as GENDER were entered. The maximal ran-
dom structure included random intercepts for SPEAKER and
VOWEL IDENTITY, as well as random slopes for all fixed ef-
fects. Because of convergence errors the model was simpli-
fied, first removing random slopes. As the model converged,
the predictor GENDER did not explain variance in the data and
was therefore removed. Stepwise simplification resulted in a
final model with random intercepts for SPEAKER and VOWEL
IDENTITY. The coefficients, the t−test values and p-values
are presented in Table 2. Reference level for all ID and cor-
pus frequency factors was the comparative condition high-high.
Reference level for the predictor value SPEECH RATE was the
comparison between two vowels in sentences that were both
produced at fast speech rate. For STRESS, reference level was
the comparison between two vowels in syllables with primary
lexical stress.

Results of the baseline LMM showed that for the predic-
tors SURPRISAL, UNIGRAM WP, SPEECH RATE and STRESS all
comparisons with their respective reference level led to signif-
icant results in explaining variability of MCD in German vow-
els. With regards to the control factor PhonDat2 SYLLABLE
FREQUENCY, vowels in high-high syllable frequency condition
were not significantly more similar than vowels in low-low con-
dition. Vowels in the comparative condition PhonDat2 WORD
FREQUENCY mid-low were not more distant from each other
than vowels in high-high condition.

Regarding our hypotheses, post-hoc analysis using Tukey-
tests was performed to identify differences between contrast-
ing and non-contrasting conditions. Contrary to our hypothesis,
non-contrasting comparative SURPRISAL conditions were sig-
nificantly different from each other in their MCD. The same
was true for non-contrasting UNIGRAM WP conditions, except
for the comparison between mid-mid and low-low which was
not significant (z = -0.64 , p = 0.98). In contrast to our ex-

Figure 2: MCD of German vowels in words with different UNI-
GRAM WP conditions.

pectation, we also found a non-significant differences between
non-contrasting and contrasting ID conditions. MCD values in
the condition high-high and high-mid SURPRISAL (z = 2.06,
p = 0.30) did not differ from each other significantly. We found
the same phenomena for the ID factor UNIGRAM WP. Compar-
ing MCD values in high-high and mid-low UNIGRAM WP con-
dition did not give a significant result (z = 0.54, p = 0.99) (see
Figures 1 and 2).

For the prosodic factors, all STRESS conditions differed sig-
nificantly from each other in post-hoc analysis. MCD values
in stressed-stressed condition were significantly smaller than in
stressed-unstressed (Coeff. = -0.06, z = -34.73, p < 0.001) and
unstressed-unstressed condition (Coeff. = -0-04, z = -21.83,
p < 0.001). Contrary to our hypothesis, MCD values in non-
contrasting SPEECH RATE conditions differed from each other
significantly according to LMM output and additional post-hoc
analysis. Vowels in two slowly produced sentences were not
less distant from each other than vowels in comparative con-
ditions slow-fast (z = -1.73, p = 0.50) and slow-normal read
speech (z = 0.35, p = 0.99). Also, there was no significant dif-
ference between MCD of vowels in normal-normal and normal-
fast tempo (z = -0.53, p = 0.99).

The marginal pseudo-R2 indicating how much variance is
explained by the fixed factors showed that both ID effects ex-
plain 0.34 % of the MCD variance alone, control factors for
domain-specific frequency distribution add 0.47% of the ex-
plained variance. When the prosodic model was added, ex-
plained variance increased by 0.14 %. The conditional pseudo-
R2 for the variance explained by both fixed and random effects
equaled 12.94 % in the final model.

4. Discussion
This study aimed to investigate the global spectral characteris-
tics of German vowels in different ID conditions. MCD values
between same vowel identities in the same ID context and in
contrasting ID conditions were compared. Confirming our hy-
pothesis (a) SURPRISAL and UNIGRAM WP explained variabil-
ity in the German MCD values: Vowels in contrasting and non-
contrasting ID conditions were significantly different from each



Table 2: Linear mixed-effects model for MCD. Baseline ID-
prosody analysis.

Terms Coeff. t-value p-Value

ID Surprisal (h-l) -0.03 -15.19 < 0.001
Surprisal (h-m) 0.004 2.27 = 0.02
Surprisal (l-l) -0.06 -19.97 < 0.001
Surprisal (m-l) -0.03 -11.60 < 0.001
Surprisal (m-m) -0.04 -17.89 < 0.001
Word (h-l) 0.01 6.25 < 0.001
Word (h-m) -0.01 -5.23 < 0.001
Word (l-l) -0.02 -7.00 < 0.001
Word (m-l) 0.001 0.54 = 0.59
Word (m-m) -0.02 -7.69 < 0.001

Prosodic Stress (y-n) 0.02 12.98 < 0.001
model Stress (y-y) -0.04 -21.83 < 0.001

Speech rate (n-f) 0.01 5.77 < 0.001
Speech rate (n-n) 0.009 4.13 < 0.001
Speech rate (s-f) 0.02 9.95 < 0.001
Speech rate (s-n) 0.02 7.75 < 0.001
Speech rate (s-s) 0.02 7.14 < 0.001

Corpus Word (h-l) 0.04 16.39 < 0.001
frequency Word (h-m) 0.01 5.46 < 0.001

Word (l-l) -0.001 -0.74 < 0.001
Word (m-l) -0.009 -4.16 = 0.09
Word (m-m) -0.05 -18.96 < 0.001
Syllable (h-l) 0.07 32.03 < 0.001
Syllable (h-m) 0.05 20.91 < 0.001
Syllable (l-l) 0.009 3.65 = 0.08
Syllable (m-l) 0.02 9.28 < 0.001
Syllable (m-m) -0.01 -5.48 < 0.001

other. This observation, however, did not hold for all compar-
isons. Vowels in high-high SURPRISAL condition were not less
distant from each other than vowels in contrasting conditions
high-mid SURPRISAL. Same vowel identities in non-contrasting
high UNIGRAM WP condition were not more similar than the
same vowels in contrasting mid-low UNIGRAM WP condition.

Additionally, we hypothesized that there is a hierarchy
in the distance metric modeled as a function of ID context:
Smaller distances are supposedly found in same ID conditions,
while larger distances are apparent between vowels in contrast-
ing ID conditions. This hypothesis was confirmed for MCD in
different UNIGRAM WP conditions, but not for different SUR-
PRISAL conditions. Therefore, it seemed that UNIGRAM WP
was the better ID measure to predict differences in MCD val-
ues for German vowels. However, non-contrasting and con-
trasting ID condition did not form homogeneous groups. As
explained earlier, there were also significant differences be-
tween members of both categories. It should be noted that we
found the same hierarchy for MCD values in different PhonDat2
WORD FREQUENCY conditions as for UNIGRAM WP: Vowels in
non-contrasting conditions were less distant than in contrasting
conditions with significant differences between all groups1. It
followed that corpus-specific word frequency distribution also
seemed to be an equally good predictor of spectral similarity
between vowels.

As expected in hypothesis (b), the prosodic model ex-

1Results for the control factor were not reported in the Results sec-
tion.

plained variance of MCD of German vowels. Vowels in stressed
syllables were less distant from each other than vowels in un-
stressed syllables, and when vowels in unstressed-stressed con-
dition were compared. This finding possibly relates to larger
variability in unstressed German vowels because unstressed syl-
lables are produced with a higher degree of coarticulation [22].
Contrary to our expectations, non-contrasting SPEECH RATE
conditions showed a clear hierarchy of MCD with lowest val-
ues for slow-slow, followed by normal-normal and than largest
differences between vowels in sentences that were both pro-
duced at fast speech rate. Again, this result can be explained
by larger variability in vowels at fast compared to slow speech
rate [23]. However, the global sentence-based measurement of
speech rate did not capture local speech rate deviations. These
would possibly be a better predictor of locally measured MCD
values.

Analysis of marginal pseudo-R2 revealed that the ID con-
ditions explained a larger part of the variance in the dependent
variable than the prosodic model that was used here, contrary to
previous studies [3]. Still, the spectral characteristics of vowels
were only subtly influenced by ID, as expected [2]. The amount
of explained variance highly depends on the fit of the predictor
values for the dependent variable. It is likely that the prosodic
model increases in its strength if additional factors were added,
for instance realised prominence, phrasal accent or boundary
strength.

Most variance in the MCD values was explained by random
intercepts for SPEAKER and for VOWEL IDENTITY. This finding
can be explained by vowel-inherent variability and markedness
of vowels. For instance, /@/ was not found in the high SUR-
PRISAL condition, while vowels /ø:, œ, y:, Y/ only stood in high
SURPRISAL bi-phones. Also, investigation of the conditional
modes of the random intercepts showed that the large vowel-
inherent variability within /@/ and /5/ was reflected in overall
larger MCD values in pairwise comparisons than for all other
German vowels. Coefficients were 0.24 and 0.23 respectively.

The current analysis was based on read speech. In sponta-
neous speech, effects of information density on phonetic struc-
ture have been found to be more pronounced than in other
speech registers [24] suggesting that the patterns found here
might at least also be found in other registers.

5. Conclusions
The current study showed that German vowels differ signifi-
cantly from each other when they stand in different ID con-
texts. However, information density was not a strong predictor
of MCD values of German vowels. The prosodic model ex-
plained even less variance than ID which was possibly due to
a weak model that was based on canonical stress and a global
sentence-based speech rate measure. Unigram word probability
and corpus-specific word frequency showed expected tenden-
cies in MCD: Smaller distances were found between vowels in
the same conditions compared to vowels in contrasting condi-
tions.
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