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RELATIONAL PHONETIC FEATURES
FOR CONSONANT IDENTIFICATION

IN A HYBRID ASR SYSTEM

Jacques Koreman, William J. Barry & Bistra Andreeva

Abstract

In this article we discuss implementation of some fundamental phonetic ideas related

to what we shall call "relational processing" in a cross-language consonant

identification system. The term relational processing refers to the way vowel

transitions play a role in the identification of neighbouring consonants. Two

experiments are described: first, consonant identification results from a hidden

Markov modelling experiment are presented for consonants plus the preceding and

following vowel transitions, if present. The results are compared to a baseline

experiment, in which the vowel transitions are not used in the identification of the

consonants. In the second experiment, the acoustic parameters are first mapped onto

phonetic features; this mapping is performed by a Kohonen network1. Since vowel

transitions are considered to be particularly important for identification of the place

of articulation of the neighbouring consonant, only the place features (and not the

consonants' manner features or the phonetic features of the vowel to which the

transitions belong) are derived for the vowel transitions. Separate hidden Markov

models are trained for the consonants, for the vowel offset and vowel onset

transitions which share all consonantal place-of-articulation features.

Concatenations of these models form the phone-like recognition units (comparable

to the concatenation of phone models for the recognition of words in a conventional

ASR system) which are later used for consonant identification. The results are

compared with a baseline experiment in which no acoustic-phonetic mapping is

performed. The experiments show that relational processing improves the

consonant identification results.

In diesem Artikel stellen wir die Implementierung einiger grundlegenden

phonetischen Ideen in einem sprach�bergreifenden System zur

Konsonantenerkennung vor, die unter dem Begriff "relationelle Verarbeitung"
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fallen. Der Terminus "relationelle Verarbeitung" bezieht sich auf den Beitrag

vokalischer Transitionen zur Identifikation benachbarter Konsonanten. Es werden

zwei Experimente vorgestellt: zuerst wird in einem Hidden-Markov-

Modellierungsexperiment die Konsonantenidentifikationsrate f�r die

konsonantischen Segmente zusammen mit den vorhergehenden und nachfolgenden

Vokaltransitionen, falls vorhanden, pr�sentiert. Die Ergebnisse werden denen eines

Basisexperiments gegen�bergestellt, in dem die Vokaltransitionen nicht f�r die

Identifikation der Konsonanten verwendet werden. Im zweiten Experiment werden

die akustischen Parameter mittels eines Kohonennetzes1 zun�chst in phonetische

Merkmale umgewandelt. Da die Vokaltransitionen insbesondere als "Cue" f�r die

Artikulationsstelle des Nachbarkonsonanten gelten, werden nur die sich darauf

beziehenden Merkmale (und nicht die konsonantischen Merkmale, die die

Artikulationsart beschreiben, oder die Merkmale des transitionstragenden Vokals)

f�r die Vokaltransitionen definiert. Getrennte Hidden-Markov-Modelle werden f�r

die Konsonanten und f�r die VK- bzw. KV-Transitionen mit gemeinsamen

Merkmalen f�r die Artikulationsstelle trainiert. Die Konkatenation dieser Modelle

bildet die phonartigen Erkennungseinheiten (vergleichbar mit der Konkatenation

von lexikalischen Einheiten in der konventionellen ASR), die der sp�teren

Konsonantenerkennung dienen. Die Ergebnisse werden mit dem Basisexperiment

verglichen, in dem keine akustisch-phonetische Projektion stattfindet. Die

Experimente zeigen, da§ die relationelle Verarbeitung die Erkennungsrate erh�ht.

1 . Introduction

It has been amply demonstrated that powerful statistical modelling techniques
for automatic speech recognition, such as hidden Markov modelling or neural
networks (NNs), can lead to very high recognition rates: word recognition rates of
more than 95% are no longer exceptional, even for large-vocabulary continuous
word recognition systems. Especially, good language models2 enhance automatic
speech recognition (ASR), as has been demonstrated by Lee (1990). In the present
article, we shall confine ourselves to the level of phone recognition, though; no

1 The Kohonen network was developed at the Center for PersonKommunikation at Aalborg
University, Denmark. It is described in Dalsgaard (1992).

2 For different types of language models, see also chapter 8 of Waibel & Lee (1990).
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language model is used in the experiments which we shall present. The reason for
confining ourselves to the level of phone recognition is that even if language models
can solve many of the ambiguities at the phone level, it is important to maximize the
phonetic information extracted from the signal. This is especially important as speech
technology begins to address the problem of recognizing spontaneous speech
(Greenberg, 1996).

Variability in the signal is in part caused by the mutual influence between
neighbouring3 sounds. Because separate states can model these transitions in
context-dependent phone models, they result in better recognition rates than
context-independent ones (Schwartz et al., 1985). By using generalized triphones,
the known acoustic similarities between some transitions are exploited and lead to
further improvements in recognition rates (Derouault, 1987; Deng et al, 1988; Lee,
1990). The reason for applying these principles lies especially in the wish to increase
homogeneity in the states of hidden Markov models (HMMs) representing vowels,
while at the same time maximizing the amount of training data for each HMM. In this
article we shall show how using the transitions in a phonetically motivated way also
improves consonant identification results.

A set of experiments which focus on relating vowel transitions to the
identification of consonants and their place of articulation is presented (see Barry,
1995, for a first discussion of the term "relational processing"). All experiments were
carried out on 16 kHz labelled speechfiles from the English, German, Italian and
Dutch parts of the Eurom.0 database. From the database, the text passages ("numbers
passage"), spoken by two female and two male speakers for each language (= 16
speakers), were used. Consonant identification is performed across the 4 languages.
This stresses the generality of the phonetic principles which are the subject of this
article and at the same time increases the training material for HMM.

The consonant identification rates reported in this article are low in comparison
to recognition rates presented in the literature. There are several reasons for this, such
as the modest amount of training data in the database for some of the HMMs we
have trained, the fact that the data were taken from several speakers and from 4

3 In fact, assimilatory influences  need not be due to directly, linearly neighbouring sounds, but
can be due to more distant sounds. These longer-distance assimilations are not addressed here.



86 Koreman, Barry & Andreeva

different languages, the fact that we are only reporting consonant and not vowel
identification rates (vowel identification is relatively easy for ASR systems) and the
fact that we do not use a language model. We want to stress that for our present
purpose, this is not relevant: we have carried out controlled experiments and want to
demonstrate that we can improve "conventional" ASR systems by using phonetic
strategies. Thus, the actual identification rates should only be considered in a
comparison between the experiments and the corresponding baseline experiments.

2 . Using vowel transitions to identify consonantal place of
articulation

In the introduction, we mentioned the fact that generalized triphones are often used
in ASR. The main reason for their success is that the variability in the vowel signal
that is being modelled is less than if all vowel transition are modelled in one and the
same model. Generalized triphones therefore result in models which are homogenous,
without suffering from the disadvantage that there are few data to train the models, as
can be the case if vowels are modelled separately for each consonantal context.
Interestingly, this stresses the use of vowel transitions for reducing the noise in the
signal.

We shall show how vowel transitions, in addition to their role in limiting the
noise for the purpose of vowel  recognition, can play a positive role in the
identification of consonants in an ASR system. Since the 1950s and '60s, many
experiments have shown the contribution of vowel transitions in consonant
identification by human listeners (Cooper et al., 1952; Liberman et al., 1954; Delattre
et al., 1955; Delattre, 1968; Stevens & Blumstein, 1978). In most speech recognition
systems, though, consonants are modelled only on the basis of their steady states (the
part of the speech signal which is traditionally segmented as the consonant). The
vowel transitions are only used to model the vowels4. We shall present an
experiment in which consonants are not only recognized on the basis of their steady

4 The transitions are implicitly also used for consonant recognition, if the ASR system uses a
lexicon, since in the lexicon phone sequences are represented by a concatenation of consonant
HMMs and HMMs which model generalized triphones for the vowels.
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states, but Ð if available Ð also on the basis of the surrounding vowel transitions (see
also Cassidy & Harrington, 1995). The results will be compared with a baseline
experiment in which the transitions are not used to identify the consonant.

2.1.  Experiment 1

Preprocessing

Vowel transition were defined to be 35 ms long (compare Furui, 1986). All vowels in
the labelfiles were relabelled, dividing the vowel up into a vowel onset transition, a
steady state and a vowel offset transition. The duration of the steady state of the
vowel was variable; it was computed as the vowel duration in the original labelfile
minus 70 ms (which is the total duration of the two vowel transitions). If the vowel in
the original labelfile was less than 70 ms, the signal was divided equally into an onset
and an offset transition. Since vowel transitions from a particular vowel are similar for
all consonants which share the same place of articulation, we generalized across place
of articulation. Eight places of articulation were distinguished, namely labial (lab),
dental (den), alveolar (alv), alveolo-palatal (alp), palatal (pal), velar (vel), uvular (uvu)
and glottal (glo). The transitions were thus labelled as "i:_lab", "O_vel", "alp_u:", etc.
(SAMPA notation5).

All consonants were represented by the corresponding SAMPA symbols, except
for plosives and affricates, which were labelled as a sequence of a closure and friction
(if present). The closure was labelled as either voiceless or voiced; labels "p0" and
"b0" were used regardless of the consonantal place of articulation, since place of
articulation has a negligible effect on the signal. The friction part of the phone was
labelled "p, t, k, b, d, g" for plosives and "f, s, S, z, Z" for affricates (according to the
phone's voicing and place of articulation). Also, realizations of phones which
represent the same phoneme, but are realized very differently, were represented by
different labels. This was the case for /r/, which can be realized as a uvular or apical
trill ("Ruvu" and "ralv", respectively), or as a retroflex ("rret"), depending on the

5 SAMPA notation is used as described in the final report of Esprit project 2589: Multi-lingual
Speech Input/Output Assessment, Methodology and Standardisation (1992).
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language. Similarly, the phoneme /v/ can stand for a labio-dental fricative ("vfri") or
approximant ("vapr" = IPA symbol {è}), depending on the language6.

HTK 2.0 was used for parameterization and HMM of the signals (Young et al.,
1995). Two versions of the experiment were run, a "static" and a "dynamic" one. In
the static experiment, 12 mel-frequency cepstral coefficients (MFCCs) and energy
were computed from the signal; in the dynamic experiment, delta coefficients were
computed in addition. A 15-ms Hamming window was used, so that the spectral
changes in the transitions are not smeared out over time too much; step size was 5 ms.
A preemphasis of 0.97 was used. Note, however, that in what we shall term the
dynamic experiment, static parameters are also used! This is true for both experiments
reported in this article.

HMM training and testing

A total of 311 HMMs7 were trained (HTK programs: HInit and HRest): one for each
label in the database8, except for vocalic steady states. Note that separate HMMs
were trained for the transitions and the (parts of) consonants. All the data in the
database were used in training as well as in testing (therefore "identification"). The
reason for doing so is that the amount of training data available was relatively small.
There is no reason to assume that our findings would not hold if training and testing
data are different, although this remains to be demonstrated.

In the testing phase (HTK program: HVite), individual consonants, optionally
including vowel transitions, were identified, which were all saved as separate testfiles
(using the HTK-program HCopy). A total of 12,154 testfiles were thus created.

Besides a file listing all the HMMs, a dictionary and net file are needed for the
identification task. In the dictionary, each consonant was defined as a concatenation
of a vowel offset transition, consonantal label(s) and a vowel onset transition
(comparable to the concatenation of phone models for the recognition of words in a

6 Of course, phonemes often have different variants even within a language. This is not reflected
in the labels, so that we can say that the labelling is phonemic at the level of individual
languages and, for most phonemes, across languages.

7 Each HMM consisted of 3 states with a single Gaussian probability density function
(covariance was modelled). The HMMs were left-to-right, no states were allowed to be skipped.

8 Except for some transition labels which were only represented by one token in the database.
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conventional ASR system). The transitions were optional; so were the closure and
friction parts of the plosives, with the restriction that minimally the burst had to be
present, or the closure plus one transition (since, if there is only a closure label, there is
no way of determining the plosive's place of articulation from the label names). All
label combinations which can form a consonant are given in the dictionary in
appendix A. The dictionary file in appendix A was expanded for this experiment by
replacing V in all the transitional labels by all the vowels occurring in such a
transition (some of the combinations of a vowel and a consonantal place of
articulation did not occur in the database). The expanded dictionary file was used for
identification of the consonants.

A very simple net file was used, in which it was stated that each testfile had to
be categorized as a consonant, i.e. one of the entries in the dictionary.

Baseline experiment

In parallel to the experiment above, a baseline experiment was carried out. The
baseline experiment only differed from the experiment described above in that no
vowel transitions were used to identify the consonants. The baseline experiment
therefore represents the consonant identification results in a "conventional" HMM
recognition system. In the tables, the results for the baseline experiments are given
under "no V transition".

2.2.  Results

The results show that using vowel transitions improves identification rates. This is
true both for the static and for the dynamic experiment, in which MFCCs and energy,
and MFCCs, energy and their delta coefficients, respectively, were used. The results
are listed in tables 1a and b for identification of the consonant and its place of
articulation, respectively.
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Table 1a. Identification rates for 34 consonant categories without/with use of

vowel transitions, on the basis of static and dynamic input parameters

(see text)

no V transitions V transitions

static 18.78% 19.97%

dynamic 15.04% 17.29%

Table 1b. Identification rates for 8 places of articulation without/with use of vowel

transitions, on the basis of static and dynamic input parameters (see

text)

no V transitions V transitions

static 29.20% 43.55%

dynamic 25.90% 41.50%

Despite the fact that the consonants are often not preceded or followed by a
vowel transition (the situation that a consonant is flanked by two vowels is the
exception rather than the rule in the database), there are considerable differences in
the identification rates. This is especially true for the identification of the place of
articulation of the consonant. Had we concentrated only on consonants which do
have transitions preceding and following them, higher identification rates should be
expected.

The improvement in the consonant identification rates is only slightly greater in
the dynamic experiment. Since delta parameters should better reflect the spectral
change in the vowel transitions, this is somewhat surprising.
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2.3. Conclusions

Table 1a and 1b show that the addition of delta parameters if we want to identify (the
place of articulation of) consonants reduces the number of correct identifications (by
roughly 2-4%). A possible explanation for the reduction in the identification rates lies
in the fact that the consonants themselves (i.e. without the vowel transitions) consist
only of steady states, so that the delta parameters do not carry information in the
consonants, but instead add noise to the acoustic parameter vectors. We shall return
to this in section 6 of this paper, where we discuss the implications for the next phase
of our research.

Comparison of table 1a with table 1b shows that the improvement in the correct
identification rates for the consonantal place of articulation is quite substantial when
we use the vocalic transitions. The improvement in the identification rates of the
consonants is small in comparison. The large improvement in the correct place of
articulation identification rates confirms the phonetic assumption that the vowel
transitions particularly carry information about the place of articulation of the
consonant. Thus, it confirms the main phonetic hypothesis underlying the
experiment.

If we consider that all consonants in the database were offered for recognition
and that we did not select only those consonants which are flanked by vowels, the
effect is extremely encouraging, since it is only a subset of the total dataset which can
have caused the improvement of the identification rates.

3 . Recognizing phones on the basis of phonetic features

In the recent literature, several successful attempts have been made to recognize
speech on the basis of phonetic features. The phonetic features are either used as
input to an ASR system directly or they are used to define the model configurations
(Deng and Erler, 1992; Deng & Sun, 1994; Zacks & Thomas, 1994; Bitar & Espy-
Wilson, 1995a,b; Strik, 1995; Kirchhoff, 1996a,b). The rationale behind using phonetic
features is that they define all and only the relevant distinctions between functional
units in speech (phonemes).
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In the present experiment, we have used a hybrid ASR system, which combines
a Kohonen or self-organizing neural network (SONN) with HMM. The SONN is
employed to map acoustic parameters (the static or dynamic acoustic parameters from
the first experiment) onto phonetic feature strengths. The phonetic features have
been chosen so that they are close to the prime articulatory property determining the
acoustic structure. In appendix B, we have listed all the phonetic labels which we
used in the present experiment together with their phonetic feature definitions.
Features like [±anterior] and [±coronal] or [±grave] and [±acute] are also used in
phonological theories, but their relationship to the acoustic realization is much less
clear than we may expect for the phonetic features used in the mapping here. The
success of the mapping of acoustic parameters onto phonetic features depends on
the closeness of the relationship between them. The question of an optimal set of
phonetic features for ASR remains an open question, though.

The SONN takes single frames of acoustic parameters as its input and for each
frame, outputs a vector of phonetic feature strengths. Since the aim of the experiment
is consonant identification, there is no mapping from the acoustic parameters onto
vocalic phonetic features, even for the transitions, which are considered to be part of
the vowel. The reason is that these features are not relevant for consonant
identification. It is important to note that vowel transitions are treated differently
from consonants in the acoustic-phonetic mapping. For the consonants, the acoustic
parameters are mapped onto the complete set of consonantal phonetic features, i.e.
phonetic feature strengths are derived for all consonantal place-of-articulation and
manner features. For the transitions, a mapping of the acoustic parameters onto
phonetic features is only performed for the place-of-articulation features of the
neighbouring consonant, since we want to show the relational function of the
transitions, i.e. their importance for the identification of the neighbouring consonant's
place of articulation. For transitional frames, the consonantal manner features and all
the vocalic features are thus set to zero, since they are assumed to be of minor
importance for the identification of the neighbouring consonant. By treating
transitions and consonants differently, we help the system to focus on phonetically
relevant properties.

In the consonant identification step, the phonetic feature strengths are then
used as input to HMM. As in the first experiment, we shall report the results from a
consonant identification task.
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3.1.  Experiment 2

Preprocessing

As in the first experiment, consonant and vowel transition labels are used, but
this time the vowel transition labels do not only generalize across consonantal place
of articulation, but also pool all the vowels, whose identity is not relevant for the
identification of the consonant. All the vowels are represented by "V" in the
labelname. This produces labelnames such as "V_glo" for the transition of any vowel
into a glottal consonant and "den_V" for the transition from a dental consonant into
any vowel.

The preprocessing of the signalfiles is exactly the same as in the previous
experiment. Again, we shall run two versions of the experiment: one in which only
static acoustic parameters are used (MFCCs and energy) and one in which these are
used together with dynamic parameters (the MFCC and energy delta parameters).

SONN mapping

A 50x50 SONN was used to map the acoustic parameter vectors (see section 2.1) of
all the consonants in the database onto phonetic features. The SONN is described in
Dalsgaard (1992). Training of the SONN is performed in two stages:

¥ In the first stage, called stimulation, all acoustic parameter vectors are fed into
the SONN, which organizes itself phonotopically.

¥ In the second or calibration stage of the training, the same acoustic parameters
are fed into the SONN, but this time a phonetic feature vector (the one listed
behind the phonetic label in appendix B) is attached to the winning neuron for
each frame; which neuron wins is entirely determined by the distance between
the acoustic parameter vector and all the neurons in the SONN. All phonetic
feature vectors of the frames which activated a neuron during calibration are
collected in a matrix for each neuron.

At the end of the training phase, all the phonetic feature values which have
activated a neuron are averaged. At this time, all the neurons in the SONN have a
vector attached to them which consists of averaged phonetic feature values. If a
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neuron was often activated by a frame which is belongs to a labial consonant or a
vowel transition into or from a labial consonant, the averaged phonetic feature value
for [lab] will tend towards 1. If that same neuron was activated non-nasal consonants,
the averaged phonetic feature value for [nas] will tend towards -1. In this way,
averaged phonetic feature values which potentially range from -1 to 1 are attached to
each neuron in the SONN.

The trained SONN is used to map acoustic parameters onto phonetic feature
strengths. The mapping is performed as follows: each acoustic parameter vector is fed
into the SONN and output phonetic feature strengths are computed by taking a
weighted average of the average feature values (see calibration above) of the K-
nearest neurons.

HMM training and testing

At the end of the mapping procedure described above, our signalfiles have been
converted to files which contain phonetic feature strengths for each frame. The
HMM procedure is the same as in the previous experiment, except that the signalfiles
contain phonetic feature strengths instead of acoustic parameters and the labelfiles, in
which we have not only generalized across the consonants' place of articulation, but
also across all vowels, giving only 31 HMMs instead of 311. As in the first
experiment, the dictionary containing the consonants to be identified consists of
concatenations of HMMs for a vowel offset, (parts of) a consonant and a vowel
onset; the dictionary is given in appendix A (no expansion is applied, as in the first
experiment; compare section 2.1). The same segments were used for recognition as in
the first experiment, except that they were extracted from the phonetic feature
strength files instead of from the acoustic parameter files.

Baseline experiment

Experiment 1 of this article forms the baseline for the present experiment (compare
tables 1a and 1b above), since no acoustic-phonetic mapping was used and the
acoustic parameter vectors were used for HMM directly.
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3.2.  Results

The results for the identification of the consonant and its place of articulation are
given in tables 2a and 2b, respectively. Identification rates increase tremendously if
we use a hybrid ASR system, in which acoustic parameters are first mapped onto
phonetic features, which are then used to train and test HMMs. Consonant
identification percentages for the HMM system (conventional HMM on the basis of
acoustic parameters, but also using vowel transitions!) are around 25% lower; for
place of articulation, the difference is around 15%.

Table 2a. Identification rates with/without acoustic-phonetic mapping on the basis

of static and dynamic input parameters (see text) for 34 consonant

categories, using vowel transitions

no mapping mapping

static 19.97% 45.82%

dynamic 17.29% 41.16%

Table 2b. Identification rates with/without acoustic-phonetic mapping on the basis

of static and dynamic input parameters (see text) for 8 places of

articulation, using vowel transitions

no mapping mapping

static 43.55% 61.34%

dynamic 41.50% 56.09%
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As in the first experiment, performance on the basis of dynamic acoustic
parameters (MFCCs, energy and delta coefficients) is lower than if we do not use
delta parameters (so-called "static" acoustic parameters). Please note that there is no
distinction between the static and dynamic systems as far as the type of input
parameters to HMM is concerned: in both cases, only static phonetic features were
used (no delta's between the values of the phonetic features in consecutive frames
were computed in either the "dynamic" or the "static" system).

3.3.  Conclusions

In section 3.1 it was explained that we used vowel transition labels in this experiment
which generalize across the vowels. This is an additional generalization to the first
experiment, in which the vowel transition labels were only generalized across the
place of articulation of the consonant. Still, this does not mean that the acoustic
variability of the transitions for the different vowels was not respected: at the level of
stimulation of the SONNs, acoustic parameter vectors were used to allow the SONNs
to self-organize, irrespective of the labels which were later attached to each frame in
the calibration stage. I.e., the SONNs can represent the acoustic variability for
transitions from or into different vowels by attaching the acoustic parameter vectors
to different neurons.

It is in the step to HMM that the generalization becomes relevant. At the level
of calibration of the SONN, no vowel features are used, so that the phonetic feature
strength vectors which are produced by the acoustic-phonetic mapping no longer
reflect the differences between the vowels to which the transitions belong. This was
done with a purpose, namely in order to only select information from the transitions
which is relevant for the identification of the consonant (or more precisely, its place
of articulation).

Performing the same generalization across vowels in the first experiment would
not be a useful baseline for the results obtained in the present experiment, since a
generalization across vowels at the acoustic level would make the results
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deteriorate9. It would result in inhomogenous HMM reflecting the full range of
acoustic variability due to all the different vowels.

The mapping of acoustic parameters onto phonetic feature strengths leads to a
large improvement in the identification rates, both for the consonants and for their
place of articulation. This shows that the acoustic-phonetic mapping can help the
system to focus on linguistically relevant aspects of the acoustically variable
realizations, which was the main goal of this experiment.

4 . General conclusions

In two experiments, it was demonstrated how phonetic knowledge can be useful in
the identification of consonants. Both experiments were concerned with the
relational information available in the speech signal. Although the identification rates
in the experiments are relatively low, the results are very encouraging. The reasons
for the low identification rates were outlined in the introduction and do not affect the
interpretation of the results. When we compare the results of our experiments with
the corresponding baseline experiments, we can see that the implementation of the
phonetic principles addressed here leads to considerable improvements in consonant
identification.

In the first experiment, it was shown that we can use the information carried by
the vowel transitions to improve the identification of the consonants and particularly
of their place of articulation. Since the transitions can be used for the identification of
another sound (the consonant) than the one it belongs to (the vowel), this
information has been called "relational".

The second experiment was primarily intended to show that we can optimize
consonant identification by first mapping acoustic parameters onto phonetic feature
strengths, thus highlighting the linguistically relevant information in the signal to

9 Just for interest's sake, the results if you do use transition labels wich generalize across vowels
as well as across consonantal place of articulation when the acoustic parameters are fed into
HMM directly are 15.66, resp. 25.66% for consonant identification and identification of its
place of articulation on the basis of static acoustic parameters and 12.81 and 21.81% for the
corresponding dynamic acoustic parameters.
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better distinguish the functional units, which are more abstract and less variable. At
the same time, the experiment was concerned with relational aspects of the signal, in
that phonetic features representing consonantal place of articulation were extracted
from the neighbouring vowel transitions.

5 . Data-driven implementations of the phonetic ideas

The experiments and the results which we have presented in this paper show how
the implementation of phonetic ideas can improve consonant identification. Since
data-driven techniques are often very powerful, it would be good to define the
variables used in a data-driven manner.

As an example, we can pick out our definition of the transitions, which we have set at
a fixed 35-ms duration. It is clear that transition from vowels into consonants and
vice versa do not have a fixed duration. If a transition is shorter than 35 ms, this
causes a frame from the steady state of a vowel to be treated as a transitional frame in
our system. On the other hand, if a transition is longer than 35 ms, we are only using
part of the transition to help to identify the consonant. Both situations can prevent
the ASR system from reaching optimal results. It should be possible to select
transitional segments from the signal in a data-driven manner, for instance on the
basis of the values of the delta parameters or on the basis of a spectral variation
function external to the system. First pilots with a spectral variation function led to
the insertion of transitional frames in the middle of steady states and also caused parts
of transitions not to be selected as such, so that we decided not to proceed along that
line. This does not mean, however, that using a data-driven method to select
transitions from the signal is impossible; it merely shows that there are no simple
solutions to the problem. On the other hand, we should also point out a more
principled problem here: some transitions are not characterized by a clear change in
the spectrum, so that it may be difficult to identify them as transitions for a system
which bases its decision on spectral change. This is the case when the vowel
formants and the locus positions of the formants for a consonant are more or less
identical, as for instance in combinations of [j] and [i:] or of [w] and [u:]; in these cases
the smaller amount of overall spectral energy in the consonant compared to the
vowel transitions is the main cue which distinguishes the consonant from the vowel.
To a lesser extent, the same problem arises in combinations of for example [d] (locus
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position of the second formant: 1800 Hz) and [E], where the second formant does not
change, while the first formant does; here, too, there is a difference in overall spectral
energy between the consonant and the vowel, which can be used as a cue by a
spectral variation function..

Another data-driven extension of the ideas presented in this article could be
useful for optimizing the set of phonetic features used for acoustic-phonetic mapping
(compare experiment 2). Although the feature matrix which we have used in this
article has a clear phonetic foundation, it may be far from perfect for the distinction
between functional linguistic units on the basis of our parameterization of the
acoustic signal (which does not necessarily parallel the representation produced by
our hearing system). Automatic clustering techniques may be able to produce a more
efficient set of features for this purpose. It is not unlikely that the feature set resulting
from automatic clustering, which is optimal from an ASR point of view, is difficult to
relate to phonetic or phonological feature sets which have been used by linguists. In
a sense, by using automatic clustering to produce a feature matrix for distinguishing
all the functional units, we make up for the simplified representation of the speech
signal. If we were able to preprocess the speech signal in a way which is more similar
to that in human listeners, we should expect the discrepancy between the bottom-up
feature set derived by automatic clustering and the more top-down linguistic feature
set, which presupposes a human perceptual preprocessor, to be reduced.

We believe there is ample space for data-driven improvements of the ASR
strategies suggested in this article. That the strategies we have used can lead to
substantial improvements is reflected in the identification rates for consonants and for
their place of articulation which were presented in this paper.

6 . Future research: using acoustic delta parameters selectively

In the experiments reported, one of the results was that the addition of delta
parameters to the static acoustic vector (MFCCs and energy) led to a slight decrease
in the consonant identification results. We suggested that this may be due to the fact
that the addition of delta parameters for consonants is unnecessary and only presents
extra noise or random variation to the ASR system. On the other hand, the delta
parameters should be expected to be useful to characterize the vowel transitions,
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since they supposedly best reflect the spectral change which is typical of most
transitions. We have therefore devised a system architecture which makes variable
use of the delta parameters, putting a greater weight on the phonetic feature strength
vectors output by the dynamic SONN when a frame probably (on the basis of its
acoustic parameters) belongs to a vowel transition, while giving more weight to the
vector from the static SONN if a frame is more likely to belong to a steady state. It is
hoped that using the dynamic information in the acoustic signal selectively will
further enhance consonant identification.
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Appendix A: HTK dictionary file

C      hmm_V_pal hmm_C hmm_pal_V

C      hmm_C hmm_pal_V

C      hmm_V_pal hmm_C

C      hmm_C

Dfri   hmm_V_den hmm_Dfri hmm_den_V

Dfri   hmm_Dfri hmm_den_V

Dfri   hmm_V_den hmm_Dfri

Dfri   hmm_Dfri

J      hmm_V_pal hmm_J hmm_pal_V

J      hmm_J hmm_pal_V

J      hmm_V_pal hmm_J

J      hmm_J

L      hmm_V_pal hmm_L hmm_pal_V

L      hmm_L hmm_pal_V

L      hmm_V_pal hmm_L

L      hmm_L

N      hmm_V_vel hmm_N hmm_vel_V

N      hmm_N hmm_vel_V

N      hmm_V_vel hmm_N

N      hmm_N

Ruvu   hmm_V_uvu hmm_Ruvu hmm_uvu_V

Ruvu   hmm_Ruvu hmm_uvu_V

Ruvu   hmm_V_uvu hmm_Ruvu

Ruvu   hmm_Ruvu

S      hmm_V_alp hmm_S hmm_alp_V

S      hmm_S hmm_alp_V

S      hmm_V_alp hmm_S

S      hmm_S

T      hmm_V_den hmm_T hmm_den_V

T      hmm_T hmm_den_V

T      hmm_V_den hmm_T

T      hmm_T
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Z      hmm_V_alp hmm_Z hmm_alp_V

Z      hmm_Z hmm_alp_V

Z      hmm_V_alp hmm_Z

Z      hmm_Z

b      hmm_V_lab hmm_b0 hmm_b hmm_lab_V

b      hmm_b0 hmm_b hmm_lab_V

b      hmm_V_lab hmm_b0 hmm_b

b      hmm_b0 hmm_b

b      hmm_V_lab hmm_b hmm_lab_V

b      hmm_b hmm_lab_V

b      hmm_V_lab hmm_b

b      hmm_b

b      hmm_V_lab hmm_b0 hmm_lab_V

b      hmm_b0 hmm_lab_V

b      hmm_V_lab hmm_b0

d      hmm_V_alv hmm_b0 hmm_d hmm_alv_V

d      hmm_b0 hmm_d hmm_alv_V

d      hmm_V_alv hmm_b0 hmm_d

d      hmm_b0 hmm_d

d      hmm_V_alv hmm_d hmm_alv_V

d      hmm_d hmm_alv_V

d      hmm_V_alv hmm_d

d      hmm_d

d      hmm_V_alv hmm_b0 hmm_alv_V

d      hmm_b0 hmm_alv_V

d      hmm_V_alv hmm_b0

f      hmm_V_lab hmm_f hmm_lab_V

f      hmm_f hmm_lab_V

f      hmm_V_lab hmm_f

f      hmm_f

g      hmm_V_vel hmm_b0 hmm_g hmm_vel_V

g      hmm_b0 hmm_g hmm_vel_V

g      hmm_V_vel hmm_b0 hmm_g

g      hmm_b0 hmm_g

g      hmm_V_vel hmm_g hmm_vel_V

g      hmm_g hmm_vel_V

g      hmm_V_vel hmm_g

g      hmm_g

g      hmm_V_vel hmm_b0 hmm_vel_V

g      hmm_b0 hmm_vel_V

g      hmm_V_vel hmm_b0
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h      hmm_V_glo hmm_h hmm_glo_V

h      hmm_h hmm_glo_V

h      hmm_V_glo hmm_h

h      hmm_h

j      hmm_V_pal hmm_j hmm_pal_V

j      hmm_j hmm_pal_V

j      hmm_V_pal hmm_j

j      hmm_j

k      hmm_V_vel hmm_p0 hmm_k hmm_vel_V

k      hmm_p0 hmm_k hmm_vel_V

k      hmm_V_vel hmm_p0 hmm_k

k      hmm_p0 hmm_k

k      hmm_V_vel hmm_k hmm_vel_V

k      hmm_k hmm_vel_V

k      hmm_V_vel hmm_k

k      hmm_k

k      hmm_V_vel hmm_p0 hmm_vel_V

k      hmm_p0 hmm_vel_V

k      hmm_V_vel hmm_p0

l      hmm_V_alv hmm_l hmm_alv_V

l      hmm_l hmm_alv_V

l      hmm_V_alv hmm_l

l      hmm_l

m      hmm_V_lab hmm_m hmm_lab_V

m      hmm_m hmm_lab_V

m      hmm_V_lab hmm_m

m      hmm_m

n      hmm_V_alv hmm_n hmm_alv_V

n      hmm_n hmm_alv_V

n      hmm_V_alv hmm_n

n      hmm_n

p      hmm_V_lab hmm_p0 hmm_p hmm_lab_V

p      hmm_p0 hmm_p hmm_lab_V

p      hmm_V_lab hmm_p0 hmm_p

p      hmm_p0 hmm_p

p      hmm_V_lab hmm_p hmm_lab_V

p      hmm_p hmm_lab_V

p      hmm_V_lab hmm_p

p      hmm_p

p      hmm_V_lab hmm_p0 hmm_lab_V
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p      hmm_p0 hmm_lab_V

p      hmm_V_lab hmm_p0

ralv   hmm_V_alv hmm_ralv hmm_alv_V

ralv   hmm_ralv hmm_alv_V

ralv   hmm_V_alv hmm_ralv

ralv   hmm_ralv

rret   hmm_V_alv hmm_rret hmm_alv_V

rret   hmm_rret hmm_alv_V

rret   hmm_V_alv hmm_rret

rret   hmm_rret

s      hmm_V_alv hmm_s hmm_alv_V

s      hmm_s hmm_alv_V

s      hmm_V_alv hmm_s

s      hmm_s

t      hmm_V_alv hmm_p0 hmm_t hmm_alv_V

t      hmm_p0 hmm_t hmm_alv_V

t      hmm_V_alv hmm_p0 hmm_t

t      hmm_p0 hmm_t

t      hmm_V_alv hmm_t hmm_alv_V

t      hmm_t hmm_alv_V

t      hmm_V_alv hmm_t

t      hmm_t

t      hmm_V_alv hmm_p0 hmm_alv_V

t      hmm_p0 hmm_alv_V

t      hmm_V_alv hmm_p0

vapr   hmm_V_lab hmm_vapr hmm_lab_V

vapr   hmm_vapr hmm_lab_V

vapr   hmm_V_lab hmm_vapr

vapr   hmm_vapr

vfri   hmm_V_lab hmm_vfri hmm_lab_V

vfri   hmm_vfri hmm_lab_V

vfri   hmm_V_lab hmm_vfri

vfri   hmm_vfri

w      hmm_V_lab hmm_w hmm_lab_V

w      hmm_w hmm_lab_V

w      hmm_V_lab hmm_w

w      hmm_w

x      hmm_V_vel hmm_x hmm_vel_V

x      hmm_x hmm_vel_V
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x      hmm_V_vel hmm_x

x      hmm_x

z      hmm_V_alv hmm_z hmm_alv_V

z      hmm_z hmm_alv_V

z      hmm_V_alv hmm_z

z      hmm_z

p0f    hmm_V_lab hmm_p0 hmm_f hmm_lab_V

p0f    hmm_p0 hmm_f hmm_lab_V

p0f    hmm_V_lab hmm_p0 hmm_f

p0f    hmm_p0 hmm_f

p0s    hmm_V_alv hmm_p0 hmm_s hmm_alv_V

p0s    hmm_p0 hmm_s hmm_alv_V

p0s    hmm_V_alv hmm_p0 hmm_s

p0s    hmm_p0 hmm_s

p0S    hmm_V_alp hmm_p0 hmm_S hmm_alp_V

p0S    hmm_p0 hmm_S hmm_alp_V

p0S    hmm_V_alp hmm_p0 hmm_S

p0S    hmm_p0 hmm_S

b0z    hmm_V_alv hmm_b0 hmm_z hmm_alv_V

b0z    hmm_b0 hmm_z hmm_alv_V

b0z    hmm_V_alv hmm_b0 hmm_z

b0z    hmm_b0 hmm_z

b0Z    hmm_V_alp hmm_b0 hmm_Z hmm_alp_V

b0Z    hmm_b0 hmm_Z hmm_alp_V

b0Z    hmm_V_alp hmm_b0 hmm_Z

b0Z    hmm_b0 hmm_Z
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Appendix B: Phonetic feature matrix for all consonants

           P  L  A  C  E      M  A  N  N  E  R      S

        l  d  a  p  v  u  g   p  f  n  l  a  t  v   o

        a  e  l  a  e  v  l   l  r  a  a  p  r  o   n

        b  n  v  l  l  u  o   o  i  s  t  r  i  i   s

p0      0  0  0  0  0  0  0   1  0  0  0  0  0 -1   0

b0      0  0  0  0  0  0  0   1  0  0  0  0  0  1   0

p       1 -1 -1 -1 -1 -1 -1   1 -1 -1 -1 -1 -1 -1   0

t      -1 -1  1 -1 -1 -1 -1   1 -1 -1 -1 -1 -1 -1   0

k      -1 -1 -1 -1  1 -1 -1   1 -1 -1 -1 -1 -1 -1   0

b       1 -1 -1 -1 -1 -1 -1   1 -1 -1 -1 -1 -1  1   0

d      -1 -1  1 -1 -1 -1 -1   1 -1 -1 -1 -1 -1  1   0

g      -1 -1 -1 -1  1 -1 -1   1 -1 -1 -1 -1 -1  1   0

f       1  1 -1 -1 -1 -1 -1  -1  1 -1 -1 -1 -1 -1   0

T      -1  1 -1 -1 -1 -1 -1  -1  1 -1 -1 -1 -1 -1   0

s      -1 -1  1 -1 -1 -1 -1  -1  1 -1 -1 -1 -1 -1   0

S      -1 -1  1  1 -1 -1 -1  -1  1 -1 -1 -1 -1 -1   0

C      -1 -1 -1  1 -1 -1 -1  -1  1 -1 -1 -1 -1 -1   0

x      -1 -1 -1 -1  1 -1 -1  -1  1 -1 -1 -1 -1 -1   0

vfri    1  1 -1 -1 -1 -1 -1  -1  1 -1 -1 -1 -1  1   0

vapr    1  1 -1 -1 -1 -1 -1  -1 -1 -1 -1  1 -1  1   0

Dfri   -1  1 -1 -1 -1 -1 -1  -1  1 -1 -1 -1 -1  1   0

z      -1 -1  1 -1 -1 -1 -1  -1  1 -1 -1 -1 -1  1   0

Z      -1 -1  1  1 -1 -1 -1  -1  1 -1 -1 -1 -1  1   0

m       1 -1 -1 -1 -1 -1 -1  -1 -1  1 -1 -1 -1  1   0

n      -1 -1  1 -1 -1 -1 -1  -1 -1  1 -1 -1 -1  1   0

J      -1 -1 -1  1 -1 -1 -1  -1 -1  1 -1 -1 -1  1   0
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N      -1 -1 -1 -1  1 -1 -1  -1 -1  1 -1 -1 -1  1   0

l      -1 -1  1 -1 -1 -1 -1  -1 -1 -1  1  1 -1  1   0

L      -1 -1 -1  1 -1 -1 -1  -1 -1 -1  1  1 -1  1   0

rret   -1 -1  1 -1 -1 -1 -1  -1 -1 -1 -1  1 -1  1   0

ralv   -1 -1  1 -1 -1 -1 -1  -1 -1 -1 -1 -1  1  1   0

Ruvu   -1 -1 -1 -1 -1  1 -1  -1 -1 -1 -1 -1  1  1   0

j      -1 -1 -1  1 -1 -1 -1  -1 -1 -1 -1  1 -1  1   0

w       1 -1 -1 -1  1 -1 -1  -1 -1 -1 -1  1 -1  1   0

h      -1 -1 -1 -1 -1 -1  1  -1  1 -1 -1 -1 -1 -1   0

V_lab   1 -1 -1 -1 -1 -1 -1   0  0  0  0  0  0  0  -1

V_den  -1  1 -1 -1 -1 -1 -1   0  0  0  0  0  0  0  -1

V_alv  -1 -1  1 -1 -1 -1 -1   0  0  0  0  0  0  0  -1

V_alp  -1 -1  1  1 -1 -1 -1   0  0  0  0  0  0  0  -1

V_pal  -1 -1 -1  1 -1 -1 -1   0  0  0  0  0  0  0  -1

V_vel  -1 -1 -1 -1  1 -1 -1   0  0  0  0  0  0  0  -1

V_uvu  -1 -1 -1 -1 -1  1 -1   0  0  0  0  0  0  0  -1

V_glo  -1 -1 -1 -1 -1 -1  1   0  0  0  0  0  0  0  -1

lab_V   1 -1 -1 -1 -1 -1 -1   0  0  0  0  0  0  0   1

den_V  -1  1 -1 -1 -1 -1 -1   0  0  0  0  0  0  0   1

alv_V  -1 -1  1 -1 -1 -1 -1   0  0  0  0  0  0  0   1

alp_V  -1 -1  1  1 -1 -1 -1   0  0  0  0  0  0  0   1

pal_V  -1 -1 -1  1 -1 -1 -1   0  0  0  0  0  0  0   1

vel_V  -1 -1 -1 -1  1 -1 -1   0  0  0  0  0  0  0   1

uvu_V  -1 -1 -1 -1 -1  1 -1   0  0  0  0  0  0  0   1

glo_V  -1 -1 -1 -1 -1 -1  1   0  0  0  0  0  0  0   1
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