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ABSTRACT

By mapping acoustic parameters onto phonetic features, it is 
possible to explicitly address the linguistic information in the 
signal. For the experiments presented in this paper, we mapped 
cepstral parameters onto two sets of phonetic features, one based 
on the IPA chart and the other on SPE. As a result, the phoneme 
identification rates in a hidden Markov modelling framework 
increase from 15.6% for the cepstral parameters to 42.3% and 
31.7% for the IPA and SPE features, respectively. Furthermore, 
for phonetic features the resulting confusions between phonemes 
are often less severe from a phonetic point of view. The 
theoretical implications of the differences are addressed.

1. INTRODUCTION
In most current automatic speech recognition (ASR) systems, the 
acoustic signal is recognised on the basis of hidden Markov 
models (HMM’s) in conjunction with a lexicon and a language 
model. It is well-known that if the top-down restrictions of 
lexicon and language model are not used and acoustic-phonetic 
decoding is done with the HMM’s alone, phone accuracy is 
generally relatively low. The goal behind our work is to improve 
the speech recognition results (i.e. decrease the word error rate, 
WER) by improving the phone accuracy.

Several articles have recently appeared in which the 
microphone signal is preprocessed in order to optimise the 
extraction of linguistic information in the signal, e.g. [1,2,4,5]. 
In [4,5] it was shown that the use of linguistic information can 
lead to a substantial improvement in the phone accuracy. The 
identification of pre-segmented intervocalic consonants in a 
hidden Markov modelling system was shown to improve from 
13.2 to 52.0% by mapping the spectral representation of the 
signal onto IPA-based features by means of a Kohonen network.

Given these encouraging results, we decided to pursue this 
approach further. We extended the phonemes studied from only 
intervocalic consonants in [4,5] to all consonants and vowels. 
Furthermore, besides the IPA features (which were used in 
[4,5]) we also employed SPE features for the experiments 
described in the current paper. Within an HMM framework, we 
shall compare phoneme identification rates for cepstral 
parameters, IPA features and SPE features.

2. MATERIAL AND METHOD

2.1. Material
The speech material consisted of English, German, Italian and 
Dutch read passages from the EuromO database (2 male and 2

female speakers per language, 2 -  3.5 minutes per speaker). 
Eurom0 is manually segmented and labelled with SAMPA 
symbols. For the current experiment some of the labels had to be 
adapted. The reason is that some phonemes (represented by the 
same SAMPA symbol) have very different acoustic realisations. 
For example, the Italian /r/ is an apical tap or trill, while the 
English /r/ is a (post-)alveolar approximant.

Further, our system requires that the closure phase of 
plosives and affricates be labelled separately from the rest of the 
sound, so that additional labels had to be invented ([p0] and [b0] 
were used to label all voiceless and voiced closures, 
respectively). A full description of the names of the labels used 
in this paper are described in [6]. The label names for vowels 
follow the normal SAMPA conventions, except /{/, which had to 
be replaced by /AE/ to be accepted by HTK as a possible label 
(also, numbers are not allowed at the beginning of a label 
name); /Uschwa/ indicates the Dutch rounded central vowel, 
which sounds much like a stressed /@/.

2.2. Input Data to HMM
Three different sets of input data were used in our hidden 
Markov modelling experiments. They are described below.

2.2.1. Acoustic Parameters
For our baseline experiment, 26 acoustic parameters were 
computed from the 16 kHz microphone signal using HTK [7] 
(with a 15-ms Hamming window, a step size of 5 ms and pre
emphasis of 0.97): 12 mel-frequency cepstral coefficients 
(MFCC's), energy and the corresponding 13 delta parameters.

2.2.2. Phonetic Features: IPA & SPE
In a second experiment 19 IPA-based features were used (see 
Table 1), as in [4,5,6]. We shall refer to this experiment as the 
IPA experiment. The first 13 IPA features in Table 1 are only 
used for consonants, the last 5 only for vowels, while the feature 
[voiced] is used for both consonants and vowels.

IPA
labial, dental, alveolar, palatal, velar, uvular, glottal, 
plosive, fricative, nasal, lateral, approximant, trill, 
voiced, mid, open, front, central, rounded

SPE
consonantal, syllabic, nasal,sonorant, low, high, central, 
back, rounded, anterior, coronal, continuant, voiced, 
lateral, strident, tense

Table 1. IPA and SPE features used in the experiments

SPE-based features (see Table 1) were used in a third 
experiment, the SPE experiment. All 16 SPE features are used



for both consonants and vowels.
All segments in our speech material were labelled with the 

corresponding IPA and SPE features. The features have a value 
1 for “present”, -1 for “not present” and 0 for “not relevant”. 
The zero value was used for all vocalic features in the 
specification of consonants (and vice versa) in IPA, while in 
SPE all features are fully specified (-1 or 1).

2.3. Kohonen Networks
The phonetic features mentioned above were calculated from the 
acoustic parameters by means of Kohonen networks [3]. Two 
parallel 50 x 50 Kohonen networks are used for this acoustic- 
phonetic mapping. The first network is trained on the 13 static 
parameters (12 MFCC's and energy); the second is trained on 
the 13 corresponding delta parameters. Thus, the first Kohonen 
network models static information in the acoustic signal, while 
the second network models dynamic information (although this 
is not explicitly addressed in this paper).

The training phase of the Kohonen networks consists of 
three parts. (1) First, the Kohonen networks are allowed to self- 
organise on the basis of the acoustic parameters in all frames. 
The result is a so-called phonotopic map. (2) In the second step, 
the same acoustic parameters are fed into the networks again. 
The winner-takes-all principle is applied. Thus, for each frame 
the corresponding phonetic features are assigned to the most 
active neuron. (3) Finally, for each neuron average phonetic 
feature values are computed.

During mapping phonetic features are calculated in the 
following way. The acoustic parameters of one frame are fed 
into the Kohonen network. Then a weighted sum is calculated of 
the average phonetic feature values of the winning (i.e. most 
active) neuron and its K-nearest neighbours.

2.4. Identification and Evaluation
Each of the three feature sets was used to train hidden Markov 
models (HMM’s), which in turn were applied to identify 
segments. The same material was used for training and 
identification.

For each of the phones, a 3-state left-to-right HMM is 
trained with a single probability density function per state; no 
states are allowed to be skipped. In total, 53 different HMM’s 
were trained, 32 for consonants and 21 for vowels. Some of the 
consonantal HMM’s represent subphonemic units. For plosives 
and affricates separate models are trained for the closure phases, 
one HMM for voiced and one for voiceless closures (with labels 
[b0] and [p0], respectively; see also section 2.1).

The 53 HMMs do not represent the recognition units. 
During recognition an allophone dictionary is used consisting of 
56 units (35 consonants + 21 vowels). In this dictionary the 
plosives and affricates contain an optional closure symbol.

For evaluation, allophones are pooled into phoneme 
categories, since only phonemic distinctions are relevant to 
distinguish between words in the lexicon (not used here, see 
section 1). More specifically, Italian [r] ([ralv]), English [j] 
([rret]) and German [ r ]  ([Ruvu]) are pooled into one /r/; also, 
dental [t] ([tden], in Italian) was pooled into one /t/ class with 
alveolar [t]. Thus, 53 phonemic units (32 consonants and 21

vowels) are discerned during evaluation.
In order to evaluate our results we always started by 

calculating a confusion matrix. On the basis of this confusion 
matrix two evaluation scores were obtained:
(1) Ident = total of all correct identification numbers / total

number of classes to be identified
(2) ACIS = total of all correct identification percentages / total

number of classes to be identified

The correct identification rate (Ident) is simply the sum of the 
numbers on the diagonal divided by the sum of all numbers in 
the confusion matrix. For computing the average correct 
identification score (ACIS, cf. [6]), we first normalise each row 
in the confusion matrix: each number in a row is divided by the 
sum of the numbers in that row (see e.g. Tables 3a and b). The 
resulting numbers on the diagonal indicate the percentage of 
correctly identified segments for that class. ACIS is then 
calculated by summing the precentage numbers on the diagonal, 
and dividing it by the number of classes. Thus, the difference 
between Ident and ACIS is that ACIS compensates for the 
number of occurrences of each phoneme.

3. RESULTS
In this section, we shall present the results from our three 
experiments. Acoustic parameters are compared with phonetic 
features in section 3.1; in section 3.2 the results for the two 
phonetic feature sets are compared.

3.1. Acoustic Parameters versus Phonetic Features
The phoneme identification rate for the baseline experiment 
with acoustic parameters is 15.6%, i.e. 15.6% of the phonemes 
is identified correctly. Acoustic-phonetic mapping raises the 
phoneme identification rate to 42.3% for IPA features and 
31.7% for SPE features. In both cases, the improvement is 
substantial.

Comparing the confusion matrices from the three 
experiments (which are available in files 0697_01.GIF, 
0697_02.GIF and 0697_3.GIF in the CD-ROM version of these 
proceedings), it becomes clear that phones are identified better 
in the mapping experiments if  they occur in all languages. The 
more language-specific phones are often identied more 
successfully in the baseline system (in particular, /tden, g, p0f, 
T, C, D, Z, rret, w, Y, V, 2 Uschwa, 3, AE, A, V, 6/) than in 
both mapping systems. Their effect on the overall phoneme 
identification is small, however, since the number of realisations 
for these phones is less than average for the overall corpus (in 
part because they are language-specific). The deterioration of 
phoneme identification results for more language-specific 
phones is an inherent disadvantage of focussing on more 
abstract, linguistic properties of the signal, which is achieved at 
the expense of the redundancy which is characteristic of the 
acoustic signal.

The fact that the variability in the acoustic parameters is 
retained in the baseline experiment, instead of replacing it by 
more homogeneous phonetic features, also shows itself in the 
confusion results. In general, the confusions between phonemes 
are more severe from a phonetic point of view in the baseline 
experiment than in the mapping experiments. As an example, let



us consider labial consonants. Labiality clearly has different 
acoustic properties in plosives than it has in the nasal /m/, for 
example. The greater variation in the acoustic parameters, which 
form the input to hidden Markov modelling in the baseline 
experiment, makes it much more likely that confusions occur -  
also with non-labials -  than if we map all the different acoustic 
realisations of consonants onto the same feature [labial]. If the 
varying acoustic parameter values for labial phones are mapped 
onto a phonetic feature [labial], labials are more likely to be 
confused among themselves than with other places of 
articulation. For a further phonetic discussion of the effects of 
acoustic-phonetic mapping, the reader is referred to [4,6].

3.2. Two Phonetic Feature Sets
The phoneme identification results in the two mapping 
experiments are 42.3% for the IPA features and 31.7% for the 
SPE features (see Table 2), as was already mentioned above. Of 
course, with 16 SPE features versus 19 IPA features, one can 
argue that the information load on the features is lower in IPA. 
On the other hand, all 16 SPE features are used for both vowels 
and consonants, whereas only 6 of the IPA features are used to 
describe vowels, and 14 are used to disinguish among the 
consonants, with an overlap in the feature [voiced], which is 
used for both vowels and consonants (see section 2.2.2).

There is also a difference in overlap between the features. 
In IPA, the sounds are defined along three largely independent 
axes (place, manner and voicing). There is only partial 
independence between the features, because some places of 
articulation (e.g. palatal) only occur for certain manner classes 
(fricatives or approximants). The same interdependence exists 
for example between voicing and manner (e.g. nasals are always 
phonemically voiced in the four languages). In the SPE feature 
set, the same feature is often used for different types of 
phonemes, for instance the feature specification [-coronal] is 
used to define both labial and velar consonants, and most 
features which are used in SPE to distinguish between different 
vowels are also used to distinguish consonants. This makes it 
easier for vowels and consonants to be confused when SPE 
features are used than if we map onto IPA features.

Although after separately pooling all vowels and all 
consonants there is no difference in the classification of vowels 
(81.3% correct class identification for IPA features; 83.5% 
correct for SPE features), there is a stronger tendency for 
consonants to be identified as vowels in the SPE experiment. In

the IPA experiment, only 12.1% of the consonants are identified 
as vowels, against 17.5% in the SPE experiment. This supports 
our hypothesis that feature sharing across phoneme classes, as is 
the case in SPE (where some features are used to differentiate 
between subclasses within both consonants and vowels) 
increases the scope for confusions.

If we look at the identification of vowels separately, the 
correct phoneme identification rates (Ident) are 35.82 (IPA) and 
31.26 (SPE), respectively. This can be explained by the better 
identification of the most frequent vowels /@, e, a, i/ in the IPA 
experiment. If we compensate for the number of occurrences of 
the vowels (by the using ACIS), this difference disappears. For 
linguistic interpretation, we prefer the ACIS to an identification 
rate, because it better reflects how well each of the phonemes is 
identified (of course, for applications, the average number of 
realisations phonemes is very important). In the IPA experiment, 
ACIS is 53.4%, while a value of 53.0% is obtained in the SPE 
experiment. The similar vowel identification in the two 
experiments was expected, since the phonetic features which are 
used to describe the distinctions between the vowels are very 
similar (see Table 1).

With an ACIS of 53.0% (overal consonant identification 
rate: 44.4%), the consonants are identified better with IPA 
features than when SPE features are used (ACIS: 47.1%; overall 
consonant identification rate 36.8%).

Generalising the data across consonantal place of 
articulation, we find that in the IPA experiment, the ACIS for 
consonantal place of articulation is 72.8% (Ident: 53.6%). In the 
SPE experiment, the ACIS is only 65.8% (Ident: 43.0%). If we 
compare the confusions between place-of-articulation categories, 
as shown in figures 3a and 3b1, we see that dentals are far more 
often identified as alveolar, uvulars as velar, and glottal 
consonants as velar in the SPE than in the IPA experiment.
These confusions are for consonant classes which have identical 
values for the [coronal] and [anterior] values. Labials are more 
often identified as velars in the SPE experiment than in the IPA 
experiment; they also share their values for [coronal], as well as 
for [stridency]. The greater number of confusions between 
alveolars and velars can be partially explained by their sharing 
of [stridency]. We suggest that the explanation for the greater 
number of place confusions in the SPE experiment lies in 
feature sharing. When we consider the different places of 
articulation in the IPA feature set, we can see that all places of 
articulation are equally confusable, since they always differ in 
one category. Comparing this to SPE, a different relationship 
between the different places of articulation is implied. Since the 
place of articulation for consonants is described by a more 
complex relationship between different feature values than is 
the case for the IPA features set, more fine-grained distinctions 
in the relations between the different places of articulation are

The ACIS was derived from this figure by dividing the number for each 
correct place of articulation by 100 minus the percentage of deletions in 
the row, summing the outcomes and dividing it by the number of places 
of articulation (8). This was done, so as to partially correct for 
consonants which were misidentified as vowels, which appear in the 
column ”Del”. To get the true ACIS value for this experiment, it should 
be rerun with consonants only.

IPA SPE Explanation
42.3 31.7 Ident for 53 phonemes
81.3 83.5 Ident: V identified as V
87.9 82.5 Ident: C identified as C
35.8 31.3 Ident for the vowels only
53.4 53.0 ACIS for the vowels only
44.4 36.8 Ident for consonants only
53.0 47.1 ACIS for consonants only
53.6 43.0 Ident for cons. place of art.
72.8 65.8 ACIS for cons. place of art.

Table 2. Ident and ACIS values for various experiments



possible than when IPA features are used. For example, /s/ and 
/S/ differ in the features [anterior], whereas /s/ and /x/ differ in 
the features [anterior], [coronal] and [back]. This results in a 
higher confusability between the consonants.

Table. 3a. Consonant confusion percentages and number of 
realisations in the IPA experiment; all data pooled 
for place of articulation

Table 3b. Consonant confusion percentages and number of 
realisations in the SPE experiment; all data pooled 
for place of articulation

4. DISCUSSION
In this paper, we have presented an approach to ASR in which 
linguistic information is extracted from the acoustic signal by 
acoustic-phonetic mapping. The advantages and disadvantages 
of acoustic-phonetic mapping on phoneme identification were 
discussed in section 3.1. It is clear from our experiments that the 
different feature definitions which can be chosen to represent 
the linguistic properties of the phonemes have important 
implications for possible confusions and therefore for the overall 
phoneme identification results (section 3.2).

The results from our experiments show that Kohonen 
networks combine several advantages in performing acoustic- 
phonetic mapping.

First, the phonetic features only reflect those properties of 
the acoustic signal which are relevant for the distinction 
between phonemes, and they have a clear linguistic 
interpretation. Furthermore, when phonetic features are used the 
resulting confusions among the phonemes are generally less 
severe from a phonetic point of view and much more systematic, 
compared to the confusions obtained with cepstral parameters.

Second, the acoustic-phonetic mapping can map different 
acoustic realisations of a phoneme (allophones) onto the same 
phonetic features. For instance, different allophones of [l], like

clear and dark [l], which can occur in different positions in the 
syllable, for instance in British English, and partially devoiced 
versus fully voiced [l] which occur after voiceless plosives and 
in most other contexts, respectively, can be represented in 
different parts of the phonotopic map, while at the same time the 
neurons which model their acoustic properties emit very similar 
average phonetic feature values. Thus, acoustically 
heterogeneous realisations of phonemes are replaced by more 
homogeneous phonetic feature vectors at the input to hidden 
Markov modelling.

Third, the acoustic-phonetic mapping can be performed 
automatically and is fast, so that it can be implemented in 
existing real-time ASR systems.

A disadvantage of Kohonen networks is that they must be 
trained on segmented and labelled material. However, this has 
to be done only once. Up till now we have used manually 
segmented and labelled material. We intend to investigate 
whether it is possible to use automatically segmented and 
labelled material. The restriction that manually segmented and 
labelled data must be used to train the Kohonen networks is not 
so severe, if  we consider that our experiments show that it is 
possible to generalise these networks across languages, so that 
already available manually segmented and labelled material 
from several languages may be used for training.

Our experiments show that Kohonen networks are very 
advantageous for pre-processing the acoustic parameters. If 
Kohonen networks are used to map acoustic parameters onto 
phonetic features, phone accuracy is increased. However, the 
current experiments have some limitations: training and test 
data are the same, and we have not checked whether the 
increases in phone accuracy also lead to reductions in word error 
rates when a lexicon and language model are used during 
recognition. Experiments are now underway to evaluate whether 
the improved phone accuracy obtained by acoustic-phonetic 
mapping also decreases the word error rate for a complete ASR 
system with a lexicon and a language model.
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lab den alv alp pal vel uvu glo DEL n
lab 58 11 14 0 0 6 0 1 9 2524
den 5 83 9 2 0 1 0 0 1 371
alv 12 3 57 5 1 6 1 0 14 6933
a1p 0 0 6 91 2 0 0 0 1 320
pal 4 0 7 1 66 1 0 0 21 319
vel 17 7 11 1 0 61 0 0 3 982
uvu 9 1 3 0 0 10 41 0 34 290
glo 10 4 6 0 3 2 0 52 24 102
INS 20 3 36 0 27 3 9 1 1 1285

lab den alv alp pal vel uvu glo DEL n
lab 38 10 18 1 1 15 1 1 16 2524
den 6 67 20 3 0 1 0 0 3 371
alv 13 5 45 4 1 11 1 0 20 6933
a1p 0 1 6 90 1 0 0 0 1 320
pal 2 1 5 1 59 2 0 0 31 319
vel 12 5 11 1 0 68 0 0 3 982
uvu 8 1 4 0 0 16 28 1 42 290
glo 8 0 5 0 4 14 1 49 20 102
INS 25 2 30 0 21 5 13 2 2 1261
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