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What is deep processing?

Deep processing means to maximally exploit grammatical
knowledge for language processing.
Focus on linguistic precision and semantic modelling
Grammar-centric approach
The opposite of deep is not statistical but shallow.
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Why we need deep processing?

Explicit model of grammaticality
Ability to capture subtle linguistic interactions
Semantics
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Problems with deep processing

Efficiency
Detailed language modelling creates large search space.
Alleviated by efficient parsing algorithms and better
hardware

Specificity
Linguistic sound vs. application interesting
Ranking of the results is necessary.

Robustness/Coverage
Strict grammaticality metric
Insufficient coverage of the grammar
Dynamic nature of language
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Robustness and specificity

Robustness and specificity are a pair of dual problems.

Grammar Engineering
Overgeneration � specificity
Undergeneration � robustness

Application
Ranked output
High coverag over
noisy inputs

For deep grammars, a balance point should be achieved to
maximize linguistic accuracy.
Robustness and specificity should come with extra
mechanism.
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Coverage problem of deep processing

Road-testing ERG over BNC [Baldwin et al., 2004]
Test on 20,000 strings from BNC
Full lexical span for only 32%
Among these

57% are parsed (overall coverage 57%× 32% ≈ 18%)
83% of the parses are correct
40% parsing failures are caused by missing lexical entries
39% parsing failures are caused by missing constructions
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The focus of this talk

Deep grammar error detection
The lexical coverage is a major problem for deep
processing.
Automated deep lexical acquisition



Background & Motivation Grammar Error Detection Automated Lexical Acquisition Summary

Outline

1 Background and Motivation
Deep Processing: State-of-the-Art
Coverage of Deep Processing

2 Grammar Error Detection
Previous Work on Grammar Error Detection
Error Mining

3 Automated Lexical Acquisition
Previous Work on Lexical Acquisition
Statistical Lexical Type Predictor



Background & Motivation Grammar Error Detection Automated Lexical Acquisition Summary

Symbolic approach

Inductive Logic Programming
Background ∧ Hypothesis � Evidence

ILP based grammar extension
[Cussens and Pulman, 2000]
After a failed parse, abduction is used to find needed edges,
which, if they existed, would allow a complete parse of the
sentence. Linguistic constraints are applied to restrict the
generation of implausible edges.

Problems
The generated rules are too general or too specific.
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Error Mining

[van Noord, 2004]
Large hand-crafted grammars are error-prone.
Manual detection of errors is time consuming.
Small test suite based validations are not reliable.
Parsing failures are good indication of (under-generating)
errors.
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Parsability

Definition

R(wi . . . wj) =
C(wi ...wj |OK )

C(wi ...wj )

If the parsability of a particular word sequence is (much)
lower, it indicates that something is wrong.
Parsabilities can be calculated efficiently for large corpus
with suffix arrays and perfect hashing.
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Error mining experiment of ERG with BNC

1.8M sentences (21.2M words) with only ASCII characters
and no more than 20 words each
Running best-only parsing with PET took less 2 days on elf

Status Num. of Sentence Percentage
Parsed 301,503 16.74%
No lexical span 1,260,404 69.97%
No parse found 239,272 13.28%
Edge limit reached 96 0.01%
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Error analysis

Number Percentage
uni-gram 2,336 10.52%
bi-gram 15,183 68.36%
tri-gram 4,349 19.58%

Table: N-grams with R < 0.1
unigram

bigram

trigram

other

unigram
bigram
trigram
other

N-gram Count
weed 59
the poor 49
a fight 113
in connection 85
as always 84
peered at 28
the World Cup 57

Table: Examples
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Pin down the errors

1.8M sent.
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Detecting lexical error

Missing lexical span
Low parsability unigrams
Language dependent heuristics:
i.e. low parsability bigrams started with determiner like
“the poor”, “a fight”
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Unification-based approach

[Erbach, 1990, Barg and Walther, 1998, Fouvry, 2003]
Use underspecified lexical entries to parse the whole
sentence
Generate lexical entries afterwards by collecting
information from the full parse
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An example of how unification-based approach works

the kangaroo jumps
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Problems with unification-based approaches

Generated lexical entries might be:
too general: overgeneration
too specific: undergeneration

Computational complexity increased significantly with
underspecified lexical entries, especially when two
unknowns occur next to each other.
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Statistical approach

[Baldwin, 2005]
Based on a set of lexical types
Treat lexical acquisition as a classification task
Generalize the acquisition model over various sencondary
language resources

POS tagger
Chunker
Treebank
Dependency parser
Lexical ontology
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Importing lexicon from a semantic lexical ontology

Assumption
There is a strong correlation between the semantic and
syntactic similarity of words. [Levin, 1993]

Fact
Above 90% of the synsets in WordNet (2.0) share at least one
lexical type among all included words.



Background & Motivation Grammar Error Detection Automated Lexical Acquisition Summary

Importing lexicon from a semantic lexical ontology

Assumption
There is a strong correlation between the semantic and
syntactic similarity of words. [Levin, 1993]

Fact
Above 90% of the synsets in WordNet (2.0) share at least one
lexical type among all included words.



Background & Motivation Grammar Error Detection Automated Lexical Acquisition Summary

Importing lexicon from WordNet

[Baldwin, 2005]
Construct semantic neighbours (all synonyms, direct
hyponyms, direct hypernyms)
Take a majority vote across the lexical types of the
semantic neighbours

Improvement
Voting is weighted and must exceed a threshold.
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Importing lexicon from WordNet

Results

Baldwin05
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Importing Lexicon from WordNet

The sparse ERG lexicon (as compared to WordNet) makes
the voting less reliable.
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Maximum entropy model based lexical type predictor

p(t , c) =
exp(

∑
i θi fi(t , c))∑

t ′∈T exp(
∑

i θi fi(t ′, c))

A statistical classifier that predicts for each occurrence of
unknown word or missing lexical entry
Input: features from the context
Output: atomic lexical types
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Atomic lexical types

The lexical information is encoded in
atomic lexical types.
Attribute-value structures can be
decomposed into atomic lexical
types.

t

h
F a | b

i

t

ta tb
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Baseline models

Select the majority lexical type for each POS

POS Majority Lexical Type
noun n_intr_le
verb v_np_trans_le
adj. adj_intrans_le
adv. adv_int_vp_le

General purpose POS tagger trained with lexical types:
TnT, MXPOST
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Basic features

Prefix/suffix of the word
Context words and their lexical types

Model Precision
Baseline 30.7%
TnT 40.4%
MXPOST 40.2%
ME basic 50.0%
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Partial parsing results

0 1 2 3 4

a b

c

d

0 1 2 3 4

Model Precision
Baseline 30.7%
TnT 40.4%
MXPOST 40.2%
ME basic 50.0%
ME +pp 50.5%
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Turning to the disambiguation model

Generate top n candidate
entries for the unknown
word
Parse the sentence with
candidate entries
Use disambiguation model
to select the best parse
Pick the corresponding
entry
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Experiment

Results
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What has been done?

Error mining based lexical error detection
Experiment with ERG and BNC shows a major part of
parsing failure is due to missing lexical entries.
Some rules are used to discover missing lexical entries.

Statistical lexical acquisition
A maximum entropy based lexical type prediction model is
designed and evaluated with various feature templates.
Lexical ontology based acquisition method is tried.
Disambiguation model is incorporated to enhance
robustness.
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