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Example of a Multimodal Clarification Strategy

User: Show me all songs with the title “Believe".

Wizard: I am searching for titles called “Believe".

User: OK.

Wizard: There are too many hints. Do you know the name of
the artist or the album ?

User: No. Please show me a selection.

Wizard: I’m searching for a selection of this title.

User: Yes. All right.

Wizard: Should I display all albums from 2004 containing this
title?

User: Yes. All right.

Wizard: I’m showing you the list.

User: OK. . . . [clicks] Show me the song from the selected
album. Play it.
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Why Multimodality?

Multimodality helps to reduce:

+ interpretation uncertainty (Orviatt, 2002)

+ the cognitive load of the user (Oriviatt et al., 2004)

The use of multimodality is context dependent:

− safety in the in-car domain

− high number of hints in the data base vs. short term
memory

− type of interpretation uncertainty

− user model

− etc.
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Thesis Goals

Overall goal:

We want to learn a clarification strategy which is more
natural, context dependent, and flexible, while
maximising user satisfaction.

Sub-goals

1. Investigate human behaviour given understanding
uncertainties.
→ Collect data on possible strategies in WOZ experiment.

2. Learn a strategy that reflects human behaviour depending
on the context.
→ “Bootstrap" an initial policy using SL.

3. Optimise that strategy for user satisfaction using RL.
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Questions to answer for generating multimodal
clarification requests (CRs)

First, the DM needs to decide that “there is evidence of
miscommunication" (Gabsdil, 2004). Then, we need to do
generation:

1. Content Selection and Organisation
• What level of (mis-) communication to address?
• What severity to indicate?

2. Multimodal Output Planning:
• Uni- or multimodal generation?

3. Realisation
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Data Collection: Introducing uncertainties

also see (Skantze, ITRW 03), (Stuttle, ICSLP 04)
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The Data

• 24 subjects

• 6 wizards

• 70 dialogues, 1772 turns (774 wizard turns), 17076 words

• 152 Clarification Requests (19.6%)

• 39.5 % multimodal Clarification Requests

→ Can we learn when to generate a multimodal CR in
context? ( graphic-yes vs. graphic-no )
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Local features

• DBmatches : data base matches (numeric)

• deletion : deletion rate (numeric)

• source : problem source (5-valued)

• userSpeechAct : user speech act (3-valued)

• templateGenerated : template generated (binary)

• delay : delay of user reply (numeric)
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Dialogue History Features

• CRhist : number of CRs (numeric)

• screenHist : number screen outputs (numeric)

• delHist : average corruption rate (numeric)

• dialogueDuration : dialogue duration (numeric)

• refHist : number of verbal user references to screen
output (numeric)

• clickHist : number of click events (numeric)
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User model features

• clickUser : average number of clicks (numeric)

• refUser : average number of verbal references (numeric)

• delUser : average corruption rate for that user (numeric)

• screenUser : average number of screens shown to that
user (numeric)

• CRuser : average number of CRs asked to user (numeric)

• driving : user driving (binary)
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Discussion

So far:

• Binary classification task: graphic-yes vs. graphic-no

• 152 training instances

• 19 features, some numeric

How to avoid data sparseness ?
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Discretisation Methods

“Global discretisation methods divide all continuous
features into a smaller number of distinct ranges."

• Unsupervised proportional k-interval discretisation (PKI).

• Supervised/Entropy-based discretisation method based on
the Minimal Description Length (MDL) principle.
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Feature Selection Methods
“Feature selection refers to the problem of selecting

an optimum subset of features that are most predictive
of a given outcome."

Searching the feature space:

• forward selection
• backward elimination

Selecting the features:

• Filters:
• Other ML techniques: J4.8
• Correlation-based subset evaluation: CFS
• Correlation-based ranking with cut-off

• Wrappers: Selective Bayes

• Self constructed: Subset overlap
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Feature selection on PKI-discretised data (left) and on
MDL-discretised data (right)
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Machine Learners

Baseline:

• Majority baseline (graphic-no ): 45.6 % weighted f-score

• 1-rule baseline: 59.8 % weighted f-score

Machine Learners:

• Rule Induction: RIPPER

• Decision Trees: J4.8

• Naïve Bayes

• Bayesian Network

• Maximum Entropy
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Results

Feature transforma-
tion/ w. f-score (%)

1-rule
baseline

Rule In-
duction

Decision
Tree

maxEnt NB Bnet Average

raw data 59.8 76.1 79.0 76.2 78.5 78.5 74.68
PKI + all features 64.4 72.9 81.6 73.2 81.6 76.4 75.02
PKI+ CFS subset 64.4 75.6 76.3 81.6 81.9*** 82.7*** 77.08
PKI+ decision tree 64.4 73.8 74.8 81.0 78.9 81.4 75.72
PKI+ selective Bayes 64.4 69.2 74.1 77.9 83.4*** 80.0 74.86
PKI+ subset overlap 64.4 76.3 78.5 81.5 83.6*** 84.3*** 78.10
MDL + all features 69.3 76.9 76.9 79.7 80.4 79.8 77.17
MDL + CFS subset 69.9 76.3 77.2 80.6 81.1 79.8 77.58
MDL + decision tree 75.5 81.5 83.4*** 83.4*** 83.1*** 84.0*** 81.82
MDL + select. Bayes 75.5 82.8*** 83.4 *** 83.7*** 84.1*** 84.1*** 82.27
MDL + overlap 75.5 82.8*** 83.6*** 83.6*** 84.1*** 84.1*** 82.28
average 67.95 76.75 78.22 80.78 81.77 81.85



 
 

Framework Predicting Multimodal Clarification Summary & Future work

Conclusions

Only the “right" combination of ML model,
discretisation method, and feature selection
algorithm shows a significant improvement over
the 1-rule baseline.

• best performing combinations: Bayesian models with
wrapper methods (w. f-score of 84.1%, 58% reduction in
error rate)

• MDL discretisation better than PKI.

• ‘vertical’ differences bigger than ‘horizontal’

• best performing feature selection method: subset overlap

• best performing feature subset: templateGenerated,
screenHist, screenUser
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Discussion: Best performing feature subset

Predictive features:

+ templateGenerated

+ screenHist

+ screenUser

→ Other studies (using RL for feature selection) found
repeated concept to be important

Less predictive features:

– refUser

– deletion

– DBmatches

– source

→ These (local) features might contribute for a larger data set!
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Summary

• Framework: “Bootstrap" a RL-based system

• Data collection in a WoZ study.

• Initial strategy learning for when to generate multimodal
CRs: 84.1% w. f-score (24.4% improvement over 1-rule
baseline)

• Feature engineering as essential step using a large feature
space with little data to achieve significant performance
gains

• Wizards’ behaviour is learnable but is considered to be
sub-optimal.
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Future work

(Near) future work: Richer annotations

• Add reward level annotations for RL.

• Estimate transition probabilities for MDP for other action
decisions (e.g. severity, grounding level).

(Distant) future work:

• Evaluate learnt policy against a hand written strategy.

• Test the portabilty to other domains.
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Papers associated with this talk:

• Verena Rieser and Oliver Lemon. Learning Multimodal
Clarification Strategies: optimizing ISU-based dialogue
management from a limited WoZ data-set . Submitted.

• Verena Rieser, Ivana Kruijff-Korbayová, Oliver Lemon.
Towards Learning Multimodal Clarification Strategies .
In: 7th ICMI, Doctoral Spotlight, 2005.

• Verena Rieser, Ivana Kruijff-Korbayová, Oliver Lemon: A
Framework for Learning Multimodal Clarification
Strategies . Proceedings of 6th SIGdial, 2005.
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Weighted f-score

“F-score which says something about recall and
precision w.r.t. class frequencies in the data."

wf =

|C|∑
1=1

wi f (Ci)

• Weight the f-score of each class by the class frequency in
the data;

• Create the sum .

back
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Rich Data Annotation

• Features: Annotation standards for multimodal dialogue
context: Joint TALK/AMI workshop, Dec 12th 2005
http://homepages.inf.ed.ac.uk/olemon/standards-workshop-cfp2.html

• Method: NXT format and the NITE XML toolkit (Carletta,
2005)
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NXT Format
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NITE toolkit reference coder
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NITE toolkit gesture coder
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NITE toolkit dialogue act coder
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The End

Thank you for your attention!
The end
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