Expressivity and Complexity of Dependency Grammars

Marco Kuhlmann

Programming Systems Lab Saarland University, Saarbr cken, Germany

IGK Colloquium · Saarbr cken · 2005–11–10

Current interest in DG

* statistical parsing Eisner 1996; Collins 1997

* languages with free word order Pl tek et al. 2001

* syntax-semantics interface Debusmann et al. 2001

The DG diversity

* grammatical paradigm

- rule-based (Gaifman, Dikovsky)
- * constraint-based (CDG, XDG)
- * structural assumptions
 - * projective (Gaifman, Eisner)
 - * non-projective (CDG, Nasr, XDG)

Milestones

***** Gaifman 1965:

Projective dependency grammars and lexicalised context-free grammars

are strongly equivalent.

* Neuhaus & Br ker 1997:

The general word problem for

unrestricted dependency grammars

is NP-complete.

What this talk is about

- * formal and computational aspects of dependency grammar
 - * language-theoretic expressivity
 - * complexity of recognition & parsing
- intermediate report on
 ongoing work for my PhD thesis

Questions asked

- * How does DG relate to grammar formalisms other than CFG?
- * How could a general framework look like, in which existing DG formalisms can be studied and compared?
- How can parsing techniques for other frameworks be transferred to DG?

Focus of this talk

- * dependency structures
 - structural constraints
 - * non-projectivity
- * dependency languages
 - mild context-sensitivity
 - * extensional perspective

* Dependency structures

- * Dependency languages
- * Complexity
- * Conclusion & Future Work

Dependency structures

Common constraints (1)

* acyclicity: no word depends on itself

* indegree at most 1: each word has at most one head

* single root: exactly one word without a head

Common constraints (2)

projectivity: the reflexive-transitive dependents of a word form a contiguous substring of the full sentence

controversial; must be abandoned
 for languages with freer word order

Drawings

- * simple models of syntactic stnotare
 - * relational structure ordered tree
 - forest + linear order on the nodes
- * dimensions of non-projectivity
 - * quantitative aspect
 - * qualitative aspect

* gap degree of a node: number of interruptions

in the projection of that node

* gap degree of a drawing: maximum over the gap degrees of the nodes in the drawing

Results

The derivations of Lexicalised
 Tree Adjoining Grammar (LTAG)
 can be interpreted as drawings
 in a natural way.

* The drawings induced by LTAG are well-nested and have a gap degree of at most 1.

Bodirsky, Kuhlmann & Möhl – FG/MoL 2005

- * I propose **drawings** as a simple class of models for dependency structure.
- Drawings allow us to formalise and reason about various forms of non-projectivity.

- * Dependency structures
- * Dependency languages
- * Complexity
- Conclusion & Future Work

Dependency languages

- * dependency language: set of dependency structures
- * string language: image of a dependency language under projections
- * dependency grammar: specifies a dependency language

CF languages

- Gaifman proved that lexicalised context-free grammars and projective dependency grammars are equivalent.
- * Context-free dependency language: image of a context-free set of trees under projective closure

$\begin{array}{cccc} S & \to & a \ S \ B \\ B & \to & b \end{array}$

Dissecting CF languages

- * an underlying set of unordered trees: forest structure
- * global linearisation constraints: projectivity, non-projectivity
- * local linearisation constraints:

MCS languages

- * mildly context-sensitive languages
 - * extend context-free languages
 - Iimited form of non-projectivity
- * mildly context-sensitive formalisms
 - ***** TAG, CCG, Minimalist Grammar
 - * corpora and practical parsers exist

Properties of MCSL

* limited crossing dependencies: crossed-serial dependencies in Dutch

* constant growth property: the size progression of the language

is bounded by a constant

* recogniseable in polynomial time
The plan

- * Take the sets of (unordered) trees specified by context-free grammars.
- Define a class of deterministic automata that transform those trees into dependency structures.
- * Prove that the resulting output languages are mildly context-sensitive.

Semilinearity

- Semilinearity is a property that implies the constant growth property.
- It may be too strong a constraint to be put on natural language.
- * A language is semilinear, if its Parikh image can be decomposed into a finite union of linear sets.

Parikh images

- Parikh vector for a string: function that maps terminal symbols to their numbers of occurrences
- Parikh image of a language: set of Parikh vectors for the strings in that language

Tree linearisers

* ingredients: context free grammar + specification of linearisation

* output: a set of dependency structures (labelled drawings)

* specialisation of deterministic

tree-walking transducers (Weir 1992)

Tree linearisers

- * finite set of context-free rules
- * finite set of states
- * finite set of actions: up, down n, mark
- * transition function:

given a current rule and state what is the action to take, and what is the new state?

$\begin{array}{cccc} S & \to & a \ S \ B \\ B & \to & b \end{array}$

$S \ \rightarrow \ a \ S \ B$

entered \rightarrow (MARK, marked) marked \rightarrow (ENTER S, entered) left S \rightarrow (ENTER B, entered) left B \rightarrow (LEAVE, left S)

Beyond context-freeness

- * reentrancies: allow a subtree to be entered and left more than once
- * number of times that this happens is called the crossing number
- extension introduces a finite number of additional states

$S \ \rightarrow \ a \ S \ B$

entered 1 \rightarrow (MARK, marked) marked \rightarrow (ENTER S, entered 1) left S 1 \rightarrow (LEAVE, left S 1) entered 2 \rightarrow (ENTER B, entered) left B \rightarrow (LEAVE, left S 2)

DTL – Finite gap degree

- Each subtree can be visited at most a finite number of times.
- Therefore, the yield of each node can be split into at most a finite number of convex blocks,
 - with a finite number of gaps.

DTL – Semi-linearity

* Parikh's Theorem:

- A language is semi-linear if and only if its Parikh image is the Parikh image of a context-free language.
- Deterministic tree linearisers merely order the nodes of a context-free set of trees.

Summary

* basic idea:

- characterise mildly context-sensitive
- dependency languages
- by different tree linearisation regimes

* still to be done:

- show that the output languages
- of tree linearisers
- can be parsed in polynomial time

A note on grammars

- I have taken a completely extensional approach to dependency languages.
- Ultimately, I also want to be able to explain what a mildly contextsensitive dependency grammar is.
- I have taken first steps into this direction (Grabowski et al., 2005).

- * Dependency structures
- * Dependency languages
- * Complexity
- * Conclusion & Future Work

Fundamental results

*** Eisner 1996:** Projective dependency grammars can be parsed in time O(n³).

- * Neuhaus & Br ker 1997: The general word problem for unrestricted dependency grammars
 - is NP-complete.

Contribution

- general parsing schema
 for gap-restricted
 dependency languages
- parsing schema: abstract specification of a parsing algorithm as an inference system (Sikkel 1997)

 $s_1: \langle I_1, \emptyset \rangle \quad \cdots \quad s_m: \langle I_m, \emptyset \rangle$ $s_1 \oplus \cdots \oplus s_m : \langle I_1 + \cdots + I_m, \emptyset \rangle$ The GROUP rule

Results

g^{m+2}

* The parsing schema proves that arbitrary gap-restricted drawings can be parsed in polynomial time.

In the special case of
 well-nested gap-restricted drawings

 a binary group rule suffices,
 independently of the gap degree.

Grabowski, Kuhlmann & Möhl – CSLP 2005

Summary

- I have proposed a general framework in which existing DG formalisms can be studied and compared.
- I have presented evidence that this framework will provide the notion of mildly context-sensitive dependency grammars.

* issues related to lexicalisation

- * general gap-restricted drawings
- * processing issues
- * embedding more formalisms
- * dependency grammars
- * formal aspects

Future work (1)

- * linguistic relevance
 - study more phenomena
 - * corpus study on non-projectivity
- * implementation
 - * using constraint programming
 - * using dynamic programming

Polynomial DGs

- * There are linguistic phenomena that are beyond the expressive power of mildly context-sensitive languages.
- It might be interesting to study dependency correspondents of more powerful grammar formalisms, such as Literal Movement Grammar.

Thank you for listening!

Backup Slides

Affiliations

- Programming Systems Lab
 Department of Computer Science
- Sonderforschungsbereich 378
 Deutsche Forschungsgemeinschaft
- International Post-Graduate College
 Language Technology
 and Cognitive Systems

Collaborators

- * Manuel Bodirsky does research in constraint solving at the Humboldt-Universit t zu Berlin
- * Robert Grabowski and Mathias M hl are diploma students at

Saarland University, Saarbr cken

Labelled drawings

- * Labelled drawings are drawings equipped with two labelling functions.
- * Node labels correspond to terminal symbols in LCFG.
- * Edge labels correspond to non-terminal symbols.

Properties

- * Each context-free dependency language is a subset of the set of projective dependency structures.
- Context-free dependency languages are closed under (consistent) permutation of subtrees.