## **About Well-Nested Drawings**

Marco Kuhlmann Programming Systems Lab Saarland University

January 27, 2005 IGK Colloquium, Saarbrücken

### The bigger picture



### **Generative frameworks**

- abstract generating device (G)
- language as the output of that device
- structure S
- S well-formed, if it is generated by G

#### - linguistic structures: a posteriori



### Model-theoretic frameworks

- class of models (M)
- description languages to talk about models
- structure S
- S well-formed, if its description is satisfied in M

#### - linguistic structures: a priori

## Benefits of model-theoretic approaches

#### - partial and ambiguous information

- underspecified representations
- syntax/semantics interface (DDKST @ COLING 2004)

### - modelling and methodology

- *a priori* notion of linguistic structures
- choice among different description languages

### Questions

- What class of structures should we consider?
- What languages should we use to talk about it?

# This talk

- The bigger picture
- Drawings with gaps
- Well-nested drawings
- Towards an algorithmic characterisation
- Future work

**Drawings with gaps** 



# **Two dimensions**

#### - vertical dimension

- constituency
- dependency
- horizontal dimension
  - word order
  - discontinuity



## **Relational structures**

#### - ingredients

- (non-empty) set of nodes
- binary relations on the nodes

#### - examples

- trees (ordered or unordered)
- feature structures

- relational structures with two relations



- relational structures with two relations
- (finite) set of nodes



- relational structures with two relations
- (finite) set of nodes
- rooted tree S (successorship)

![](_page_13_Figure_0.jpeg)

- relational structures with two relations
- (finite) set of nodes
- rooted tree S (successorship)
- linear order P (precedence)

![](_page_14_Picture_0.jpeg)

![](_page_14_Figure_1.jpeg)

### **Drawings for TAG**

- strongly lexicalised TAG
- nodes in the drawing: anchors
- tree: *derivation tree*
- order: order of anchors in the *derived tree*
- Adjunction may cause 'crossing edges'!

### **Convex sets and gaps**

![](_page_16_Figure_0.jpeg)

<

## **Strict linear orders**

- Pair of a **set S** ...
- ... and a **binary relation R over S** that is
  - irreflexive,
  - transitive, and
  - trichotomic.

![](_page_17_Figure_0.jpeg)

### **Convex sets**

- interval [*a*,*b*]
  - contains all elements x such that  $a \le x \land x \le b$
  - *a* and *b* are the *endpoints* of the interval
- **convex hull** of a set S
  - smallest interval that contains S
  - sets S such that S = H(S) are *convex*

![](_page_18_Figure_0.jpeg)

### Gaps

maximal intervals in the 'holes' of a set (with respect to the strict linear order)

![](_page_19_Picture_0.jpeg)

![](_page_19_Figure_1.jpeg)

## **Drawings with gaps**

- gap in a drawing =
  gap in the yield of one of its nodes
- drawings without gaps are *projective*
- gap degree of a drawing = maximal number of gaps for one of its nodes

![](_page_20_Picture_0.jpeg)

# TAG is gap 1

- adjunction creates gaps
- additional adjunctions
  - gaps are inherited
  - new (disjoint) gaps are created
  - gaps are extended

# **Previous work**

#### - generative approach

- dependency trees with gaps (Platek et. al.)
- linear specification language (Penn, Suhre)

#### - model-theoretic approach

- pseudo-projectivity (Kahane et. al.)
- multiplanarity (Yli-Jyrä)

![](_page_22_Figure_0.jpeg)

### Model-theoretic frameworks

#### - two alternatives

- stronger models
- expressive description language
- go for the former
  - models should capture linguistic intuition
  - efficient algorithms

# This talk

- The bigger picture
- Drawings with gaps
- Well-nested drawings
- Towards an algorithmic characterisation
- Future work

## Well-nested drawings

![](_page_25_Figure_0.jpeg)

### Observation

Not all gap-1 drawings are produced by a TAG.

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

### One way and the other

#### - In TAG, gaps are closed downwards:

- node 3 is in a gap in the yield of node 2
- but its child (node 5) is not

#### - In TAG, gaps are closed upwards:

- node 4 is in a gap in the yield of node 3
- but its parent (node 2) is not

## **Well-nestedness**

#### - intuition

- well-nested: 'obtainable by adjunctions'
- extends to drawings with gap degree > 1

### - drawings for TAG

- well-nested and gap 1
- necessary and sufficient

#### $\forall u, v \in V: \quad C(u) = C(v) \lor C(u) \subset C(v) \lor C(u) \supset C(v) \lor C(u) \bot C(v)$

## Formalising well-nestedness

#### - The arboreal tesseratomy ...

- four relations between nodes in a tree
- equality, (inverse) dominance, disjointness
- ... should extend to drawings.
  - cover = convex hull of the yield of a node
  - four relations between covers in a drawing

![](_page_29_Figure_0.jpeg)

## **Fishy things**

#### - Non-monotonic behaviour

- The definition only looks at the covers.
- It cannot 'distinguish' between different gaps.
- Result: Drawings that are not well-nested can be 'repaired' by introducing new gaps.

#### - We do not want this to happen!

#### $\forall u, v \in V: \quad C(u) = C(v) \lor C(u) \subset C(v) \lor C(u) \supset C(v) \lor C(u) \bot C(v)$

# Solution

 A drawing is well-nested if and only if the covers of the nodes in all subsets of V form a tesseratomic family

### An algorithmic characterisation

## The goal

An algorithm that tests whether or not a given description can be interpreted as a well-nested drawing.

# Two sides of the same coin

#### - Relational structures offer two perspectives

- set theory: elements and relations
- graph theory: nodes and edges
- That's nice for algorithms!

![](_page_34_Picture_0.jpeg)

# Gap graphs

#### - Rationale: 'Making gaps explicit.'

- graph on the same node set
- contains all the tree edges from the drawing
- contains additional 'gap edges'

![](_page_35_Picture_0.jpeg)

## Gap graphs

#### - Rationale: 'Making gaps explicit.'

- graph on the same node set
- contains all the tree edges from the drawing
- contains additional 'gap edges'

# Stating the non-obvious

A drawing is well-nested if and only if its gap graph is acyclic.

![](_page_37_Figure_0.jpeg)

## Part of the proof

- Assume that the drawing is well-nested.
- If the gap graph contains a cycle, it contains a cycle in normal form.
- Each path *u...vu*' in the cycle translates into the requirement that
   C(u) is properly included in C(u').
- Thus,  $C(u_1)$  should be properly included in  $C(u_1)$ .

![](_page_38_Figure_0.jpeg)

### Well-nestedness, put differently

- two components
- connected by dominance edges
- an alternating path with precedence edges
- cannot be well-nested!

### **Future work**

- complete all proofs
  (joint work with M. Möhl and R. Grabowski)
- design the algorithm
  (joint work with M. Bodirsky)
- think about the description language to use
- linguistic grounding
- look at other grammar formalisms