
Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

The XDG Development Kit

Ralph Debusmann

Programming Systems Lab, Saarbrücken

IGK Colloquium, December 16th, 2004

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Overview

1 Introduction

2 Extensible Dependency Grammar (XDG)

3 XDG Development Kit (XDK)

4 Conclusions

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Overview

1 Introduction

2 Extensible Dependency Grammar (XDG)

3 XDG Development Kit (XDK)

4 Conclusions

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Declarative Grammar Formalisms

Declarative Grammar Formalisms

specify linguistic knowledge independently from processing
parsers/generators: can be generically created for all
grammars

Examples
LFG (Bresnan 2001)
HPSG (Pollard/Sag 1994)
TAG (Joshi 1987)
CCG (Steedman 2000)

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Declarative Grammar Formalisms

Declarative Grammar Formalisms

specify linguistic knowledge independently from processing
parsers/generators: can be generically created for all
grammars

Examples
LFG (Bresnan 2001)
HPSG (Pollard/Sag 1994)
TAG (Joshi 1987)
CCG (Steedman 2000)

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Grammar Development Systems

Grammar Development Systems

tools for grammar creation
parsers
generators

Examples
XLE (Kaplan/Maxwell 1996) for LFG
LKB (Copestake 2002) for HSPG
XTAG (XTAG Group 2001) for TAG
OpenCCG (White 2004) for CCG

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Grammar Development Systems

Grammar Development Systems

tools for grammar creation
parsers
generators

Examples
XLE (Kaplan/Maxwell 1996) for LFG
LKB (Copestake 2002) for HSPG
XTAG (XTAG Group 2001) for TAG
OpenCCG (White 2004) for CCG

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Existing Formalisms and Word Order

Existing Formalisms and Word Order

languages with freer word order than English (e.g.
German, Czech, Hindi etc.) pose problems
Smolka (Smolka/Uszkoreit 1996): Could more advanced
constraint programming techniques improve linguistic
processing?

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Axiomatization of Dependency Trees

Axiomatization of Dependency Trees

(Duchier 1999, 2003): axiomatization of valid dependency
trees using finite set constraints
parsing: reduced to constraint programming
grammar formalism: Topological Dependency Grammar
(TDG) (Duchier/Debusmann 2001)
elegant new treatment of free word order

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Extensible Dependency Grammar (XDG)

Extensible Dependency Grammar (XDG)

generalization of TDG (Debusmann et al. 2004)
graph description language for modeling arbitrary many
levels of linguistic structure
same parsing methods by constraint programming
(Duchier 1999, 2003)
goes beyond syntax:

semantics
(Debusmann/Duchier/Koller/Kuhlmann/Smolka/Thater
2004)
information structure (Debusmann/Postolache/Traat 2005),
out of an IGK-project also with Ciprian Gerstenberger and
Stefan Thater

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

XDG Grammar Development Kit (XDK)

XDG Grammar Development Kit (XDK)

first grammar development system for XDG
implemented in Mozart/Oz, published in the Mozart Global
User Library (MOGUL)

Facilities
new abstract lexicon language
grammar file compiler
graphical interfaces
solver for parsing and generation

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

XDG Grammar Development Kit (XDK)

XDG Grammar Development Kit (XDK)

first grammar development system for XDG
implemented in Mozart/Oz, published in the Mozart Global
User Library (MOGUL)

Facilities
new abstract lexicon language
grammar file compiler
graphical interfaces
solver for parsing and generation

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Overview

1 Introduction

2 Extensible Dependency Grammar (XDG)

3 XDG Development Kit (XDK)

4 Conclusions

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphs

Graphs

XDG describes labeled graphs
uses the linguistic notion of dependency grammar

Example

every programmer should like Mozart

det obj

vcompsubj

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphs

Graphs

XDG describes labeled graphs
uses the linguistic notion of dependency grammar

Example

every programmer should like Mozart

det obj

vcompsubj

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphs

Multiple Graphs

XDG typically describes an arbitrary number of graphs
called dimensions
same set of nodes, different edges

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphs

Example

Syntax tree

every programmer should like Mozart

det obj

vcompsubj

Semantic dag

every programmer should like Mozart

patag

prop
ag

det

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphs

Example

Syntax tree

every programmer should like Mozart

det obj

vcompsubj

Semantic dag

every programmer should like Mozart

patag

prop
ag

det

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Well-Formedness Conditions

Well-Formedness Conditions

interaction of principles and the lexicon
principles: restrictions on one or more dimensions
subset of an extensible principle library
lexicon: feature structures controlling the principles

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Well-Formedness Conditions

Example Principles

tree: dimension i must be a tree
dag: dimension i must be a dag
valency: for each node on dimension i, the incoming edges
must be licensed by the in specification, and the outgoing
edges by the out specification
order: constrains the order of words on dimension i, e.g.
subjects precede objects
linking: constrains how arguments on dimension i

(semantics) must be realized on dimension j (syntax), e.g.
agents are realized as subjects

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Well-Formedness Conditions

Example Lexical Entry

lexical entry for like, controls valency and linking principles:

like =

syn :

[

in : {vcomp?}
out : {obj!}

]

sem :

in : {prop?}
out : {ag!, pat!}
link : {ag : {subj}

pat : {obj}

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Overview

1 Introduction

2 Extensible Dependency Grammar (XDG)

3 XDG Development Kit (XDK)

4 Conclusions

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

XDK Features

XDK Features

new abstract lexicon language
grammar file compiler
graphical interfaces
solver for parsing and generation

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Lexicon Language

XDG: linguistic information mostly specified in the lexicon
but: lexicon grows huge even for medium-sized grammars
need facilities for adequate modularization and
factorization
types: specify feature structures, define combination
operation
metagrammar (Crabbe/Duchier 2004): abstract description
language for lexicon construction

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Types

each type: set L and partial function u : L × L → L

(combination operation of L)
u: typically greatest lower bound

Supported types
domains, records, valencies, sets, tuples, strings

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Types

each type: set L and partial function u : L × L → L

(combination operation of L)
u: typically greatest lower bound

Supported types
domains, records, valencies, sets, tuples, strings

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Domain Types

e.g. set of edge labels:

syn.label = {det, subj, obj, vcomp}

combination operation: a u a = a, a u b undefined for a 6= b

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Record Types

given set of features (fi)i=1...n and types Ti = (Li,ui):

{f1 : v1, . . . , fn : vn}

where vi ∈ Li.
combination operation defined feature-wise:

{f1 : v1, . . . , fn : vn} u {f1 : v′

1
, . . . , fn : v′

n} =
{f1 : v1 u1 v′

1
, . . . , fn : vn un v′

n}

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Valency Types

e.g. in and out specifications:

syn.valency = valency(syn.label)

defines syn.valency to be the record type:

{det : mode, subj : mode, obj : mode, vcomp : mode}

mode = {0, ?, !, ∗}

mode combination operation (specialization):

0 u x = x ∗ u! =! ∗ u? =? ?u! =!

convenient notation:

{det : 0, subj :!, obj :?, vcomp : 0} = {subj!, obj?}

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Metagrammar

abstract description language for lexicon construction
lexical classes:

Class ::= ClassName → ClassBody

class body:

ClassBody ::= ClassBody
1
&ClassBody

2

| ClassBody
1
| ClassBody

2

| ClassName
| partialLexicalEntry

&: combination operation
|: non-deterministic choice
ClassName: class reference

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Example (1)

finite verbs can be roots or the head of a relative clause:

root →
[

syn :
[

in : {}
]]

rel →
[

syn :
[

in : {relcl?}
]]

finite → root | rel

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Example (2)

finite verbs may be either intransitive, transitive or
ditransitive:

intr →
[

syn :
[

out : {subj!}
]]

tr → intr &
[

syn :
[

out : {obj!}
]]

ditr → tr &
[

syn :
[

out : {iobj!}
]]

verb → intr | tr | ditr

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Example (3)

finite verb:

finiteVerb → finite & verb
= (root | rel) & (intr | tr | ditr)

all possibilities of

(root & intr) (root & tr) (root & ditr)
(rel & intr) (rel & tr) (rel & ditr)

e.g.:

rel & ditr →

[

syn :

[

in : {relcl?}
out : {subj!, obj!, iobj!}

]]

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Grammar File Compiler

Grammar File Compiler

fast static grammar checker
fast grammar file compilation
prepared for very large grammars (GNU GDBM support)
three concrete syntaxes for different purposes:

XML language: automated grammar development
User Language (UL): handcrafted grammars
Intermediate Language (IL): record-based language,
tailored for Mozart/Oz and further processing within the
XDK

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphical Interfaces

Graphical Interfaces

comprehensive graphical user interface (GUI)
solver search tree visualization: Oz Explorer (Schulte
1997), IOzSeF (Tack 2003)
visualization of partial/full analyses: output library:

Tcl/Tk dag display
LaTeX dag output (using Denys Duchier’s dtree.sty)
internal solver language output using the Oz Inspector
(Brunklaus 2000)

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphical Interfaces

GUI

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphical Interfaces

Oz Explorer

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Graphical Interfaces

Dag display

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Solver

Solver

based on axiomatization of dependency parsing in
(Duchier 1999, 2003)
factorized into modular, extensible principle library
principles: sets of constraint functors
e.g. valency principle: in constraint and out constraint
starting sequence regulated by global constraint priorities
to increase efficiency

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Solver

Preferences and Search

idea: guide the search for solutions by external knowledge
sources: oracles
idea by Thorsten Brants and Denys Duchier, extended in
(Dienes et al. 2003)
oracles interact with solver using sockets
XDK: supports new standard oracle architecture created
by Marco Kuhlmann

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Overview

1 Introduction

2 Extensible Dependency Grammar (XDG)

3 XDG Development Kit (XDK)

4 Conclusions

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Summary

Summary

introduced XDG Development Kit (XDK)
new lexicon specification language
grammar file compiler
graphical interfaces
solver for parsing and generation
extensive documentation (200+ pages), PDF, PS, HTML,
GNU info

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Future Work

Future Work

solver: fairly efficient for handcrafted grammars, but not for
automatically generated ones
why? grammar encoding or solver or both?
theoretical investigation of fragments of XDG
integration of the new faster GECODE constraint library
(Christian Schulte, Guido Tack, Gabor Szokoli)
super-tagging (lexicon disambiguation before
parsing/generation)

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

References

References

Joan Bresnan.
Lexical Functional Syntax.
Blackwell, 2001.

Thorsten Brunklaus.
Der Oz Inspector — Browsen: Interaktiver, einfacher,
effizienter.
Diploma thesis, Saarland University, 2000.

Ann Copestake and Dan Flickinger.
An Open-Source Grammar Development Environment and
Broad-Coverage English Grammar Using HPSG.
In Conference on Language Resources and Evaluation,
Athens/GRE, 2000.

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

References

References

Benoit Crabbé and Denys Duchier.
Metagrammar Redux.
In Proceedings of the International Workshop on Constraint
Solving and Language Processing, Roskilde/DK, 2004.

Ralph Debusmann, Denys Duchier, Alexander Koller,
Marco Kuhlmann, Gert Smolka, and Stefan Thater.
A Relational Syntax-Semantics Interface Based on
Dependency Grammar.
In Proceedings of COLING 2004, Geneva/SUI, 2004.

Ralph Debusmann, Oana Postolache, and Maarika Traat.
A Modular Account of Information Structure in Extensible
Dependency Grammar.
In Proceedings of the CICLING 2005 Conference, Mexico
City/MEX, 2005. Springer.

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

References

References

Peter Dienes, Alexander Koller, and Marco Kuhlmann.
Statistical A* Dependency Parsing.
In Prospects and Advances in the Syntax/Semantics
Interface, Nancy/FRA, 2003.

Denys Duchier.
Axiomatizing Dependency Parsing Using Set Constraints.
In Proceedings of MOL 6, Orlando/USA, 1999.

Denys Duchier.
Configuration of Labeled Trees under Lexicalized
Constraints and Principles.
Research on Language and Computation, 1(3–4):307–336,
2003.

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

References

References

Denys Duchier and Ralph Debusmann.
Topological Dependency Trees: A Constraint-Based
Account of Linear Precedence.
In Proceedings of ACL 2001, Toulouse/FRA, 2001.

Aravind K. Joshi.
An Introduction to Tree-Adjoining Grammars.
In Alexis Manaster-Ramer, editor, Mathematics of
Language, pages 87–115. John Benjamins,
Amsterdam/NL, 1987.

Ronald M. Kaplan and John T. Maxwell.
LFG Grammar Writer’s Workbench.
Technical report, Xerox PARC, 1996.

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

References

References

Carl Pollard and Ivan A. Sag.
Head-Driven Phrase Structure Grammar.
University of Chicago Press, Chicago/USA, 1994.

Christian Schulte.
Oz Explorer: A Visual Constraint Programming Tool.
In Lee Naish, editor, Proceedings of the Fourteenth
International Conference on Logic Programming, pages
286–300, Leuven/BEL, jul 1997. MIT Press.

Gert Smolka and Hans Uszkoreit.
NEGRA Project of the Collaborative Research Centre
(SFB) 378, 1996–2001.
Saarland University.

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

References

References

Mark Steedman.
The Syntactic Process.
MIT Press, Cambridge/USA, 2000.

Guido Tack.
Linearisation, Minimisation and Transformation of Data
Graphs with Transients.
Diploma thesis, Saarland University, 2003.

Michael White.
Reining in CCG Chart Realization.
In Proceedings of the 3rd International Conference on
Natural Language Generation, 2004.

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

References

References

XTAG Research Group.
A Lexicalized Tree Adjoining Grammar for English.
Technical Report IRCS-01-03, IRCS, University of
Pennsylvania, 2001.

Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Thank you!

Thank you!

	Introduction
	Declarative Grammar Formalisms
	Grammar Development Systems
	Existing Formalisms and Word Order
	Axiomatization of Dependency Trees
	Extensible Dependency Grammar (XDG)
	XDG Grammar Development Kit (XDK)

	Extensible Dependency Grammar (XDG)
	Graphs
	Well-Formedness Conditions

	XDG Development Kit (XDK)
	XDK Features
	Lexicon Language
	Grammar File Compiler
	Graphical Interfaces
	Solver

	Conclusions
	Summary
	Future Work
	References
	Thank you!

