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Declarative Grammar Formalisms

Declarative Grammar Formalisms

specify linguistic knowledge independently from processing
parsers/generators: can be generically created for all
grammars

Examples
LFG (Bresnan 2001)
HPSG (Pollard/Sag 1994)
TAG (Joshi 1987)
CCG (Steedman 2000)
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Existing Formalisms and Word Order

Existing Formalisms and Word Order

languages with freer word order than English (e.g.
German, Czech, Hindi etc.) pose problems
Smolka (Smolka/Uszkoreit 1996): Could more advanced
constraint programming techniques improve linguistic
processing?
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Axiomatization of Dependency Trees

Axiomatization of Dependency Trees

(Duchier 1999, 2003): axiomatization of valid dependency
trees using finite set constraints
parsing: reduced to constraint programming
grammar formalism: Topological Dependency Grammar
(TDG) (Duchier/Debusmann 2001)
elegant new treatment of free word order
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Extensible Dependency Grammar (XDG)

Extensible Dependency Grammar (XDG)

generalization of TDG (Debusmann et al. 2004)
graph description language for modeling arbitrary many
levels of linguistic structure
same parsing methods by constraint programming
(Duchier 1999, 2003)
goes beyond syntax:

semantics
(Debusmann/Duchier/Koller/Kuhlmann/Smolka/Thater
2004)
information structure (Debusmann/Postolache/Traat 2005),
out of an IGK-project also with Ciprian Gerstenberger and
Stefan Thater
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XDG Grammar Development Kit (XDK)

XDG Grammar Development Kit (XDK)

first grammar development system for XDG
implemented in Mozart/Oz, published in the Mozart Global
User Library (MOGUL)

Facilities
new abstract lexicon language
grammar file compiler
graphical interfaces
solver for parsing and generation
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Graphs

Graphs

XDG describes labeled graphs
uses the linguistic notion of dependency grammar

Example

every programmer should like Mozart

det obj

vcompsubj
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Graphs

Multiple Graphs

XDG typically describes an arbitrary number of graphs
called dimensions
same set of nodes, different edges
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Semantic dag

every programmer should like Mozart

patag

prop
ag

det
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Well-Formedness Conditions

Well-Formedness Conditions

interaction of principles and the lexicon
principles: restrictions on one or more dimensions
subset of an extensible principle library
lexicon: feature structures controlling the principles
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Well-Formedness Conditions

Example Principles

tree: dimension i must be a tree
dag: dimension i must be a dag
valency: for each node on dimension i, the incoming edges
must be licensed by the in specification, and the outgoing
edges by the out specification
order: constrains the order of words on dimension i, e.g.
subjects precede objects
linking: constrains how arguments on dimension i

(semantics) must be realized on dimension j (syntax), e.g.
agents are realized as subjects
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Well-Formedness Conditions

Example Lexical Entry

lexical entry for like, controls valency and linking principles:

like =

















syn :

[

in : {vcomp?}
out : {obj!}

]

sem :









in : {prop?}
out : {ag!, pat!}
link : {ag : {subj}

pat : {obj}
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XDK Features

XDK Features

new abstract lexicon language
grammar file compiler
graphical interfaces
solver for parsing and generation
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Lexicon Language

Lexicon Language

XDG: linguistic information mostly specified in the lexicon
but: lexicon grows huge even for medium-sized grammars
need facilities for adequate modularization and
factorization
types: specify feature structures, define combination
operation
metagrammar (Crabbe/Duchier 2004): abstract description
language for lexicon construction
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Lexicon Language

Types

each type: set L and partial function u : L × L → L

(combination operation of L)
u: typically greatest lower bound

Supported types
domains, records, valencies, sets, tuples, strings



Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Types

each type: set L and partial function u : L × L → L

(combination operation of L)
u: typically greatest lower bound

Supported types
domains, records, valencies, sets, tuples, strings



Introduction Extensible Dependency Grammar (XDG) XDG Development Kit (XDK) Conclusions

Lexicon Language

Domain Types

e.g. set of edge labels:

syn.label = {det, subj, obj, vcomp}

combination operation: a u a = a, a u b undefined for a 6= b
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Lexicon Language

Record Types

given set of features (fi)i=1...n and types Ti = (Li,ui):

{f1 : v1, . . . , fn : vn}

where vi ∈ Li.
combination operation defined feature-wise:

{f1 : v1, . . . , fn : vn} u {f1 : v′

1
, . . . , fn : v′

n} =
{f1 : v1 u1 v′

1
, . . . , fn : vn un v′

n}
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Lexicon Language

Valency Types

e.g. in and out specifications:

syn.valency = valency(syn.label)

defines syn.valency to be the record type:

{det : mode, subj : mode, obj : mode, vcomp : mode}

mode = {0, ?, !, ∗}

mode combination operation (specialization):

0 u x = x ∗ u! =! ∗ u? =? ?u! =!

convenient notation:

{det : 0, subj :!, obj :?, vcomp : 0} = {subj!, obj?}
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Lexicon Language

Metagrammar

abstract description language for lexicon construction
lexical classes:

Class ::= ClassName → ClassBody

class body:

ClassBody ::= ClassBody
1
&ClassBody

2

| ClassBody
1
| ClassBody

2

| ClassName
| partialLexicalEntry

&: combination operation
|: non-deterministic choice
ClassName: class reference
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Lexicon Language

Example (1)

finite verbs can be roots or the head of a relative clause:

root →
[

syn :
[

in : {}
] ]

rel →
[

syn :
[

in : {relcl?}
] ]

finite → root | rel
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Lexicon Language

Example (2)

finite verbs may be either intransitive, transitive or
ditransitive:

intr →
[

syn :
[

out : {subj!}
] ]

tr → intr &
[

syn :
[

out : {obj!}
] ]

ditr → tr &
[

syn :
[

out : {iobj!}
] ]

verb → intr | tr | ditr
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Lexicon Language

Example (3)

finite verb:

finiteVerb → finite & verb
= (root | rel) & (intr | tr | ditr)

all possibilities of

(root & intr) (root & tr) (root & ditr)
(rel & intr) (rel & tr) (rel & ditr)

e.g.:

rel & ditr →

[

syn :

[

in : {relcl?}
out : {subj!, obj!, iobj!}

] ]
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Grammar File Compiler

Grammar File Compiler

fast static grammar checker
fast grammar file compilation
prepared for very large grammars (GNU GDBM support)
three concrete syntaxes for different purposes:

XML language: automated grammar development
User Language (UL): handcrafted grammars
Intermediate Language (IL): record-based language,
tailored for Mozart/Oz and further processing within the
XDK
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Graphical Interfaces

Graphical Interfaces

comprehensive graphical user interface (GUI)
solver search tree visualization: Oz Explorer (Schulte
1997), IOzSeF (Tack 2003)
visualization of partial/full analyses: output library:

Tcl/Tk dag display
LaTeX dag output (using Denys Duchier’s dtree.sty)
internal solver language output using the Oz Inspector
(Brunklaus 2000)
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Graphical Interfaces

Dag display
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Solver

Solver

based on axiomatization of dependency parsing in
(Duchier 1999, 2003)
factorized into modular, extensible principle library
principles: sets of constraint functors
e.g. valency principle: in constraint and out constraint
starting sequence regulated by global constraint priorities
to increase efficiency
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Solver

Preferences and Search

idea: guide the search for solutions by external knowledge
sources: oracles
idea by Thorsten Brants and Denys Duchier, extended in
(Dienes et al. 2003)
oracles interact with solver using sockets
XDK: supports new standard oracle architecture created
by Marco Kuhlmann
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Summary

Summary

introduced XDG Development Kit (XDK)
new lexicon specification language
grammar file compiler
graphical interfaces
solver for parsing and generation
extensive documentation (200+ pages), PDF, PS, HTML,
GNU info
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Future Work

Future Work

solver: fairly efficient for handcrafted grammars, but not for
automatically generated ones
why? grammar encoding or solver or both?
theoretical investigation of fragments of XDG
integration of the new faster GECODE constraint library
(Christian Schulte, Guido Tack, Gabor Szokoli)
super-tagging (lexicon disambiguation before
parsing/generation)
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