(Starting) Deep Grammar Development for Mandarin Chinese

Yi Zhang

yzhang@coli.uni-sb.de Computational Linguistics Saarland University, Saarbrücken

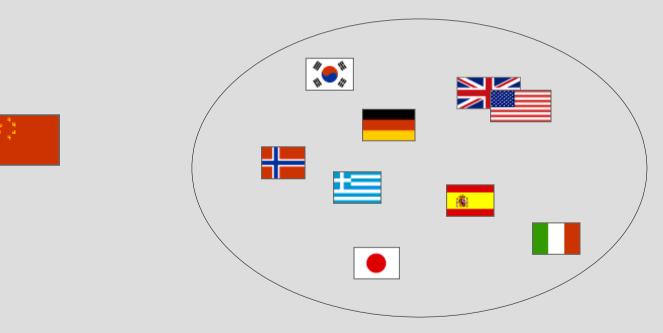
Outline

- Introduction & Motivation (Survey)
- Chinese Syntax
- Semantics with MRS
- Conclusion & Future Work

Introduction & Motivation

Objective

- To develop a deep linguistic HPSG resource grammar for Mandarin Chinese, to ...
 - Fill in a gap in Chinese deep processing;
 - Testify the applicability of HPSG formalism to Chinese;
 - For application purpose.



Situation

- Very few reported systematic deep grammar development for Chinese
- Local linguistic theories are nice, though not formalized
- HPSG is NOT adopted by most of Chinese linguists (for some or other reasons).
 - "... Just as you have mentioned, researchers in mainland China don't show much interest on HPSG. They(We) know "a little" about HPSG but can not understand it thoroughly. I think it's a great pity for CL in China. ... "

What Follows

• Chinese see themselves outside the international linguistics community.

What Follows

- Deep processing of Chinese is far lagging behind.
- Linguistic theories without formalism are not able to help the development of application.
- Cross-lingual application becomes extremely difficult, if not impossible.

Motivation

- There are matured systems for grammar engineering and efficient deep processing (LKB, PET, [incr tsdb ()], ...).
- Large scale deep grammar engineering has been carried out for a lot of languages.
- The experience gain from large scale grammar development enables quick starting of new grammar development(LinGO Grammar Matrix).

Motivation

- With a deep grammar, we can:
 - Parsing
 - Generation
 - Semantic analysis together with syntax
 - Treebanking

-

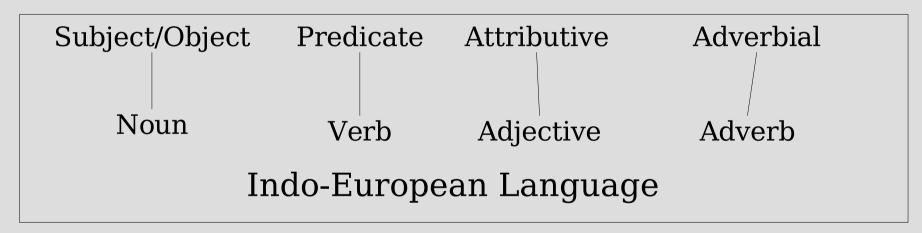
Theoretical Framework

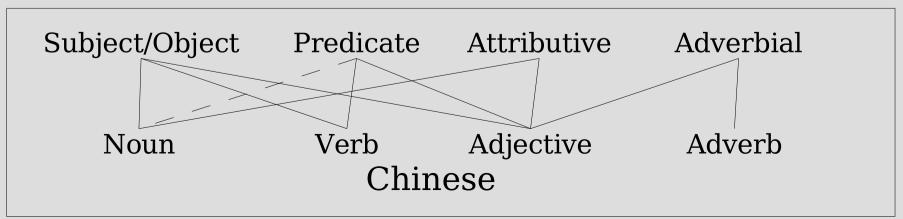
- Syntactic theory for Chinese (Zhu, 1982) & (Zhu 1985).
 - Pure syntax
 - Phrase based analysis
- HPSG (Pollard & Sag, 1994)
 - Typed Feature Structure
 - Unification based
 - Constraint based
 - Lexicalist
- MRS (Copestake et al., 1999) & (Copestake et al., 2001)

Platform & Resource

- LKB System
- LinGO Matrix Grammar (version 0.6).
- [incr tsdb()]
- Lexicon: ``*The grammatical knowledge-base of contemporary Chinese*'', ICL of PKU. Public edition with about 10,000 word entries.

Chinese Syntax


Phenomena


No morphology

- ta kai che.
 he drive car
 `He drives a car.'
- he conglai mei kai guo che.
 he always not drive ASP car
 `He has never driven a car.'
- kai che bu rongyi. drive car not easy
 Driving a car is not easy.'
- ta xihuan kai che.
 he love drive car
 `He likes to drive the car.'
- More complex syntax

Phenomena

Complex relation between syntax units and word categories

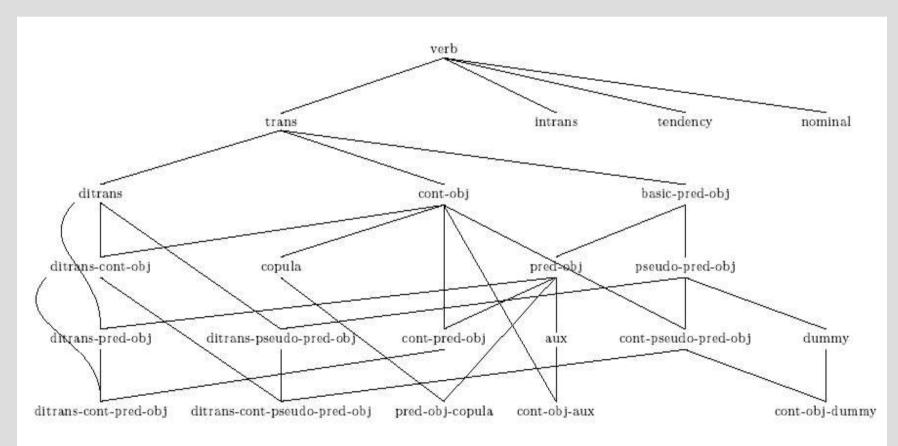
Phenomena

• 0~N verbs in a sentence

- zhe ge ren piqi hao.
 this CL person temper good
 `This person has good temper.'
- wo <mark>kan</mark> bao.
 - I read newspaper
 - `I am reading the newspaper.'
- wo mai bao kan.
 - I buy newspaper read
 - `I bought the newspaper and read.'
- wo xiang mai bao kan.
 - I want buy newspaper read
 - `I want to buy some newspaper to read.'
- wo xiang qu mai bao kan.
 - I want go buy newspaper read
 - `I want to go to buy some newspaper to read.'

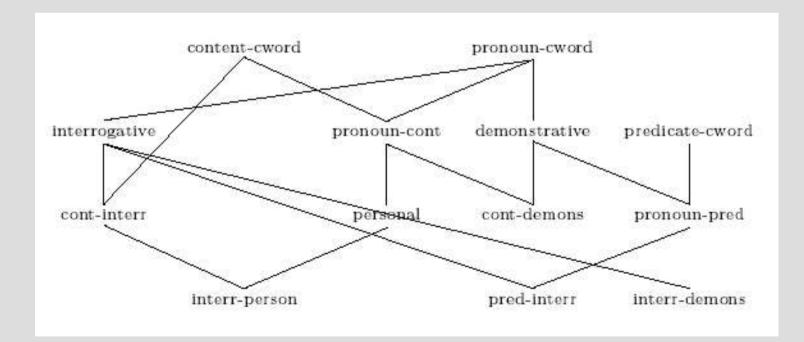
Approach

- (Zhu, 1982) & (Zhu, 1985) provided a thorough and consistent analysis of Chinese syntax, though not formalized.
- Settling the syntax theory in HPSG framework is a good choice.


Basic Word Categories

basic word					extra word		
substantive		functional		small unit	large unit	1	
content	predicate	1.a.	ana an 1919 anns		C	• 1•	Martin composi-
noun temporal spacial direction number classifier	verb adjective situation	diff. adverb	preposition conjunction auxiliary modal	onoma. excl.	prefix suffix morpheme non-morph.	idiom locution abbre.	punc.
pronoun	pronoun						

(Zhu, 1982) & (Yu, et al. 1998)


Lexical Types

• Verb

Lexical Types

• Pronoun

Lexical Types

Classifier

- d-unit-cword: unit classifier
- d-mass-cword: massive classifier
- d-meas-cword: measurement classifier
- d-volm-cword: volume classifier
- d-type-cword: type classifier
- cl-shape-cword: shape classifier
- d-undet-cword: undetermined classifier
- cl-vq-cword: verbal quantity classifier
- d-tq-cword: temporal quantity classifier

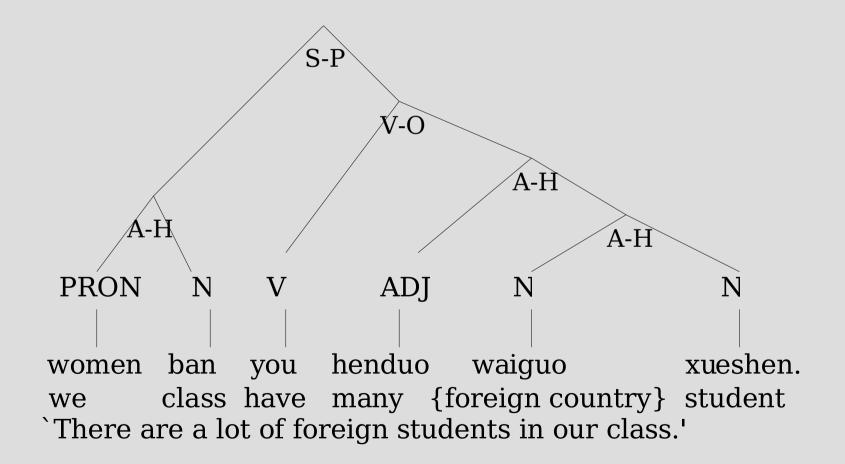
HEAD Feature

• For orthogonal features, rather than creating subtypes, I used features in *SYNSEM.LOCAL.CAT.HEAD*.

	ZAI-V	V-ZHE	V-LE
děngdài (wait)	+	+	+
jìdù (envy)		+	
rùchăng (enter)	+		+
xiězuò (write)	+	2.25	
xiàngzhēng (resemble)		+	+
kĕwàng (desire)		+	79 <u></u> 9
dàodá (arrive)		<u>22</u>	+
qĭfú (fluctuate)		1000	2

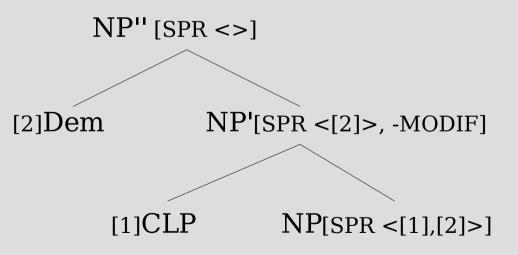
Valence Feature

c-valence := valence &


[SUBJ list, <-- subject OBJS list, <-- real objects POBJS list, <-- pseudo objects CCOMP list, <-- ``complement'' SPR list]. <-- specifiers

- Corresponding schemata
 - head-subj-phrase
 - head-obj-phrase
 - head-pobj-phrase
 - head-comp-phrase
 - head-spec-phrase

Phrase Structure Rule Types


- Subject-Predicate
- Verbal-Object
- Verbal-Complement(Post-verb modifier)
- Adjunct-Head
 - Adjunct-Content
 - Adjunct-Predicate
- Serial Verb
- Pivotal

An Example

Nominal Phrases

- Double-specifier account for Chinese NP (Say Kiat Ng, 1997)
- Some modifications to allow "Dem + Noun" construction.

Semantics with MRS

MRS Basic

- Minimum Recursion Semantics (Copestake et al., 1999) & (Copestake et al., 2001)
 - Flat semantic representation
 - Elementary Predication (EP)
 - a handle
 - a relation
 - a list of variable arguments
 - a list of scope arguments
 - Top handle
 - Constraints on scope relations (qeq condition)

MRS Basic

- the dog sleeps
 - <h0, <h1:_det(x,h2,h3), h4:dog(x),h5:sleep(e,x)>, {h0 qeq h5, h2 qeq h4}>
 - the(x,dog(x),sleep(e,x))

MRS Basic

- every dog probably chases some white cat
 - <h0, {h1:every(x,h2,h3),h4:dog(x),h5:probably(h6),h7:chase(x,y),h8:some (y,h9,h10),h11:white(y),h11:cat(y)},{h0 qeq h5, h2 qeq h4, h6 qeq h7, h9 qeq h11}>
 - probably(every(x, dog(x), some(y, white(y) ^ cat(y), chase(x, y)))) every(x, dog(x), probably(some(y, white(y) ^ cat(y), cat(y), chase(x, y)))) every(x, dog(x), some(y, white(y) ^ cat(y), probably(chase(x, y)))) probably(some(y, white(y) ^ cat(y), every(x, dog(x), chase(x, y)))) some(y, white(y) ^ cat(y), probably(every(x, dog(x), chase(x, y)))) some(y, white(y) ^ cat(y), every(x, dog(x), probably(chase(x, y))))

Problems with Chinese

• The syntax theory of (Zhu, 1982) & (Zhu, 1985) doesn't count for semantics. Semantic composition would be more difficult.

Problems with Chinese

- Subject vs. ARG1
 - women qu beijing.
 - we go Beijing
 - We go to Beijing.
 - <h0,{h1:women_p(x1),h2:qu_v(e,x1,x2),h3:beijing_n(x2)},{h0 qeq h2}>
 - mingtian qu beijing.
 - tomorrow go Beijing
 - Somebody will go to Beijing tomorrow.
 - <h0,{h1:mingtian_t(e),h2:qu_v(e,x1,x2),h3:beijing_n(x2)},{h0 qeq h2}>

Solution

- Further subcategorizing phrase structure types.
- Argument binding both in lexicon and in construction.

```
sp-pron-pred-phrase := subj-pred-phrase & head-subj-phrase &

[ NON-HEAD-DTR pronoun-cont-cword ].

sp-tempo-pred-phrase := subj-pred-phrase &

[ SYNSEMLOCAL.CAT.VAL #val,

HEAD-DTR.SYNSEMLOCAL [ CAT.VAL #val,

CONT.HOOK.INDEX #event ],

NON-HEAD-DTR temporal-cword &

[ SYNSEMLOCAL.CONT.HOOK.INDEX #event ]].
```

Conclusion & Future Work

Conclusion

- Syntax:
 - Basic word categories and phrase structure rules implemented.
- Semantics:
 - Semantics composition for basic phrase structures implemented.

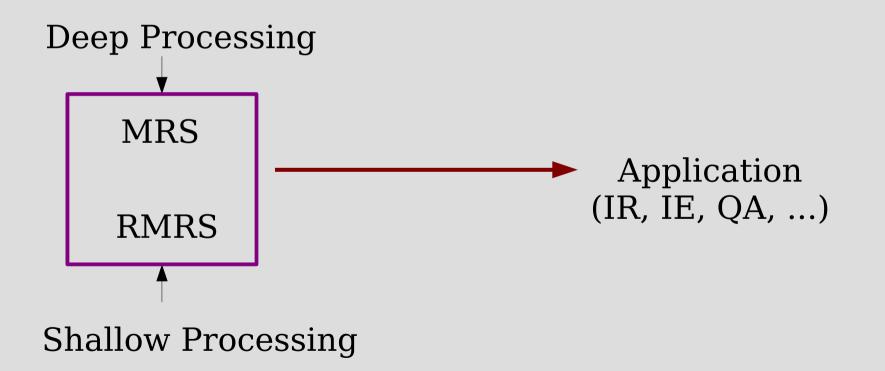
Statistics

- Starting day: May 10th, 2004
- Lexical Types: 108
- Phrase Structure Rules: 43
 - Unary Rules: 5
 - Binary Rules: 38
- Lexicon: 10,069 entries
 - Noun: 3571
 - Verb: 2094
 - Adjective: 1471
 - Adverb: 719
 - Idiom: 552
- Lines of Grammar: 2,100 (excluding Matrix & lexicon entries).

Remaining Work

- Serial verb phrase
- Pivotal phrase
- Coordination phrase
- Other special constructions, including "ba" (disposal) construction and "bei" (passive) construction.

Remaining Work


- A larger test corpus.
- More comprehensive evaluation of grammar coverage.

Beyond Grammar Engineering

- Problem with Deep Processing
 - Efficiency
 - Much larger search space than shallow methods
 - Robustness
 - Heavily depends on grammar coverage
 - Ambiguity & Specificity
 - Too many analysis results

Beyond Grammar Engineering

Combination of shallow and deep processing

