

Multi-Criteria-based Active Learning for Named Entity Recognition

Dan Shen

Outline

Introduction

- SVM-based NER system
- Multiple Criteria for Active Learning
 - Informativeness
 - Representativeness
 - Diversity
- Active Learning Strategies
- Experiments and Results
- Conclusion

Motivation

- Named Entity Recognition (NER)
 - most of current work: supervised learning
 - a large annotated corpus
 - MUC-6 / MUC-7 corpus (newswire domain)
 - GENIA corpus (biomedical domain)
- Limitation of supervised NER
 - corpus annotating: tedious and time-consuming
 - adaptability: in limited level
- Target of our work
 - explore active learning in NER
 - minimize the human annotation effort
 - without degrading performance

Active Learning Framework

Given

- an small labeled data set L
- a large unlabeled data set U

Repeat

- Train a model M on L
- Use M to test U

research focus

- select the most useful example from U
- require human expert to label it
- add the labeled example to L

Until M achieves a certain performance level

Active Learning Criteria

- Active learning with informativeness
 - most of current work
 - committee-based and certainty-based
- Active learning with representativeness
 - [McCallum and Nigam 1998] and [Tang et al. 2002]
- Active learning with diversity
 - [Brinker 2003]

NO works explored multiple criteria in active learning

Active Learning in NLP

Explored in a number of NLP tasks

- POS Tagging
- Scenario Event Extraction
- Text Classification
- Statistical Parsing

NO works explored active learning for NER

...

Outline

Introduction

SVM-based NER system

- Multiple Criteria for Active Learning
 - Informativeness
 - Representativeness
 - Diversity
- Active Learning Strategies
- Experiments and Results
- Conclusion

SVM-based NER system

- Recognize one class of NEs at a time
 - Best performance in BioCreAtIve Competition 2003
- Features
 - Binary feature vector
 - Different from supervised model
 - Cannot be produced statistically from training data set
 - No gazetteer or dictionaries
- Effort of human experts
 - Provide the basic knowledge for certain NE class
 - E.g. semantic triggers
 - Label the selected examples iteratively

Active Learning for NER

Example unit in NER

- Word-based
 - Select most useful word
 - Not reasonable: manually label a single word without any contexts
- Sentence-based
 - Select most useful sentence
 - Don't need to read the whole sentence to annotate one NE
- Named entity-based
 - Select a word sequence (a named entity and its context)
- Active Learning for NER
 - Only word-based score is available from SVM
 - Measurements: extend from words to NEs

Outline

- Introduction
- SVM-based NER system
- Multiple Criteria for Active Learning
 - Informativeness
 - Representativeness
 - Diversity
- Active Learning Strategies
- Experiments and Results
- Conclusion

1. Informativeness Criterion

Most informative example: most uncertain in existing model

Most previous works are only based on this criterion.

Informativeness Measurement for Word

- In SVM, only support vectors are useful
- Informativeness degree of a word
 - How it will make effect on support vectors by adding it to training data set
 - Distance of its feature vector to the separating hyperplane

$$Dist(\boldsymbol{w}) = \left| \sum_{i=1}^{M} \boldsymbol{a}_{i} y_{i} k(\boldsymbol{s}_{i}, \boldsymbol{w}) + b \right|$$

the closer the word is to the hyperplane, the more informative the word is for the existing model.

Informativeness Measurement for NE

- NE -- a sequence of words
 - $NE = \mathbf{w}_1 \mathbf{w}_{2^{m}} \mathbf{w}_N$, \mathbf{w}_i is the *i*th word of NE

Three scoring functions

• Info_Avg:
$$Info(NE) = 1 - \frac{\sum_{w_i \in NE} Dist^*(w_i)}{N}$$

• Info_Min: $Info(NE) = 1 - Min_{w_i \in NE} \{Dist^*(w_i)\}$

Info_InclRate:
$$Info(NE) = \frac{NUM(Dist^*(w_i) < a)}{N}$$

2. Representativeness Criterion

Most representative example: represent most examples

Only few works [McCallum and Nigam 1998; Tang et al. 2002] consider this criterion.

Similarity Measurement between Words

Cosine-similarity Measurement

- The smaller the angle is, the more similar the vectors are
- Cosine-similarity Measurement in SVM
 - kernel function $k(w_i, w_j)$: replace the inner $w_i \cdot w_j$ product

$$Sim(\boldsymbol{w}_i, \boldsymbol{w}_j) = \frac{\left|k(\boldsymbol{w}_i, \boldsymbol{w}_j)\right|}{\sqrt{k(\boldsymbol{w}_i, \boldsymbol{w}_i)k(\boldsymbol{w}_j, \boldsymbol{w}_j)}}$$

Similarity Measurement between NEs

Dynamic Time Warping (DTW) algorithm

- Alignment of two word sequences
- Given
 - point-by-point distance
- To find an optimal path
 - Minimize accumulated distance along the path

An Example -- similarity between "Oct 1 binding protein" and "NF kappa B binding protein"

2004-7-15

EGK Colloquium

Representativeness Measurement for NE

Representativeness of NE_i in NESet

- $NESet = \{NE_1, ..., NE_i, ..., NE_N\}$
- Quantified by its density
- The average similarity between NE_i and the other NE_j
 (j i) in NESet

$$Rep(NE_i) = \frac{\sum_{j \neq i} Sim(NE_i, NE_j)}{N-1}$$

- Most representative NE
 - Largest density among all NEs in NESet
 - centroid of NESet

3. Diversity Criterion

Maximize the training utility of a batch: the members in the batch have high variance to each other

Only one work [Brinker 2003] considered this criterion.

Global Consideration

- Consider the examples in a whole sample space
- K-Means Clustering
 - Cluster all named entities in NESet
 - Suppose:
 - the examples in one cluster are quite similar to each other
 - Select the examples from different clusters at a time
- Time consuming
 - Compute the centroids of clusters
 - Repartition examples
- For efficiency, filter out NEs before clustering

Local Consideration

- Consider the examples in a batch
- For an example candidate:
 - Compare it with all previously selected examples in the batch one by one
 - Add it into the batch
 - If the similarity between all of them is below a threshold
- Threshold:
 - The average of the pairwise similarities in *NESet*
- Example candidate selection:
 - Certain measurement
- More efficient!

Outline

- Introduction
- SVM-based NER system
- Multiple Criteria for Active Learning
 - Informativeness
 - Representativeness
 - Diversity

Active Learning Strategies

- Experiments and Results
- Conclusion

Strategy 1

Strategy 2

Outline

- Introduction
- SVM-based NER system
- Multiple Criteria for Active Learning
 - Informativeness
 - Representativeness
 - Diversity
- Active Learning Strategies
- Experiments and Results
- Conclusion

Data Set

Newswire Domain

- MUC-6 Corpus
- 438 Wall Street Journal articles
- To recognize Person, Location and Organization

Biomedical Domain

- GENIA Corpus V1.1
- 670 MEDLINE abstracts
- To recognize Protein

Experimental Setting 1

Corpus Split

- Initial training data set
- Test data set
- Unlabeled data set
- Size of each data set
- Batch size K
 - = 50 in biomedical domain
 - = 10 in newswire domain
- Example unit
 - a named entity
 - its context (previous 3 words and next 3 words)

Corpus Split

Domain	Class	Corpus	Initial Training Set	Test Set	Unlabeled Set
Bio	PRT	GENIA 1.1	10 Sent. (277 words)	900 Sent. (26K words)	8004 Sent. (223K words)
News	PER				
	LOC	MUC-6	5 Sent. (130 words)	602 Sent. (14K words)	7809 Sent. (157K words)
	ORG				

Experimental Setting 2

Supervised learning

- trained on the entire annotated corpus.
- Newswire: 408 WSJ articles
- Biomedical: 590 MEDLINE abstracts

Random Selection

- a batch of examples is randomly selected in each round
- F-Measurement

Experimental Results 1

Effectiveness of Single-Criterion-based Active Learning

Experimental Results 2

Overall Results of Multi-Criteria-based Active Learning

Domain	Class	Supervised	Random	Strategy1	Strategy2
Bio	PRT	223K (F=63.3)	83K	40K	31K
News	PER	157K (F=90.4)	11.5K	4.2K	3.5K
	LOC	157K (F=73.5)	13.6K	3.5K	2.1K
	ORG	157K (F=86.0)	20.2K	9.5K	7.8K

Experimental Results 3

Effectiveness of Multi-Criteria-based Active Learning

Outline

- Introduction
- SVM-based NER system
- Multiple Criteria for Active Learning
 - Informativeness
 - Representativeness
 - Diversity
- Active Learning Strategies
- Experiments and Results

Conclusion

Contribution 1

- Multi-Criteria-based active learning
 - The first work -- incorporate the informativeness, representativeness and diversity criteria all together
 - Effective strategies: combine the criteria
 - Strategy 1: Info. + clustering (Rep. & Div.)
 - Strategy 2: Linear interpolation (Info. & Rep.) + pairwise comparison in a batch (Div.)
 - Outperform single-criterion-based method
 - 60% of training data are required

Contribution 2

Active learning for NER

- The first work -- incorporate active learning in NER
- Various measurements: quantify the criteria
 - Informativeness, Representativeness and Diversity
- Compare with supervised learning and random selection:

	Random	Supervised
Biomedical	37%	14%
Newswire	28%	5%

Contribution 3

- General measurements and strategies
 - Measurements: for word sequence
 - Active learning strategy: task independent
 - Can be easily adapted to other NLP tasks
 - Text chunking
 - POS tagging
 - Statistically parsing
 - **...**
 - Can be applied to other machine learning approaches
 - Boosting algorithm

Language Technology Cognitive Systems

Future Work

- How to automatically decide the optimal value of these parameters?
 - Batch size K
 - Linear interpolation parameter ?
- When to stop the active learning process?
 the change of support vectors

The End

Thank You !