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MotivationMotivation
nn Named Entity Recognition (NER)Named Entity Recognition (NER)

n most of current work: supervised learning
n a large annotated corpus

n MUC-6 / MUC-7  corpus (newswire domain)
n GENIA corpus (biomedical domain)

nn Limitation of supervised NERLimitation of supervised NER
n corpus annotating: tedious and time-consuming
n adaptability: in limited level

nn Target of our workTarget of our work
n explore active learning in NER
n minimize the human annotation effort
n without degrading performance
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research focus

nn GivenGiven
n an small labeled data set L
n a large unlabeled data set U

nn RepeatRepeat
n Train a model M on L
n Use M to test U
n select the most useful example  from U
n require human expert to label it
n add the labeled example to L

nn Until Until MM achieves a certain performance levelachieves a certain performance level

Active Learning FrameworkActive Learning Framework
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Active Learning CriteriaActive Learning Criteria

nn Active learning with informativenessActive learning with informativeness
n most of current work
n committee-based and certainty-based

nn Active learning with representativenessActive learning with representativeness
n [McCallum and Nigam 1998] and [Tang et al. 2002]

nn Active learning with diversityActive learning with diversity
n [Brinker 2003]

nn NO worksNO works explored multiple criteria in active explored multiple criteria in active 
learninglearning
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Active Learning in NLPActive Learning in NLP

nn Explored in a number of NLP tasksExplored in a number of NLP tasks
n POS Tagging
n Scenario Event Extraction
n Text Classification
n Statistical Parsing
n …

nn NO worksNO works explored active learning for NERexplored active learning for NER
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SVMSVM--based NER systembased NER system
nn Recognize one class of Recognize one class of NEsNEs at a timeat a time

n Best performance in BioCreAtIve Competition 
2003

nn FeaturesFeatures
n Binary feature vector
n Different from supervised model

n Cannot be produced statistically from training data set
n No gazetteer or dictionaries

nn Effort of human expertsEffort of human experts
n Provide the basic knowledge for certain NE class

n E.g. semantic triggers
n Label the selected examples iteratively
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Active Learning for NERActive Learning for NER
nn Example unit in NERExample unit in NER

n Word-based
n Select most useful word
n Not reasonable: manually label a single word without any 

contexts

n Sentence-based
n Select most useful sentence
n Don’t need to read the whole sentence to annotate one NE

n Named entity-based
n Select a word sequence (a named entity and its context)

nn Active Learning for NERActive Learning for NER
n Only word-based score is available from SVM
n Measurements: extend from words to NEs
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1. Informativeness Criterion1. Informativeness Criterion

Most informative example: most uncertain in existing model

Most previous works are only based on this criterion.
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Informativeness Measurement for WordInformativeness Measurement for Word

nn In SVM, only support vectors are usefulIn SVM, only support vectors are useful
nn Informativeness degree of a wordInformativeness degree of a word

n How it will make effect on support vectors by adding it 
to training data set

n Distance of its feature vector to the separating 
hyperplane

n the closer the word is to the hyperplane, the more 
informative the word is for the existing model.
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Informativeness Measurement for NEInformativeness Measurement for NE

nn NE NE ---- a sequence of wordsa sequence of words
n NE = w1w2… wN , wi is the ith word of NE

nn Three scoring functionsThree scoring functions

n Info_Avg:

n Info_Min:

n Info_InclRate:
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2. Representativeness 2. Representativeness 
CriterionCriterion

Most representative example: represent most examples

Only few works [McCallum and Nigam 1998; Tang et al. 2002] 
consider this criterion.
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Similarity Measurement between WordsSimilarity Measurement between Words

nn CosineCosine--similarity Measurementsimilarity Measurement
n The smaller the angle is, the more similar the 

vectors are

nn CosineCosine--similarity Measurement in SVMsimilarity Measurement in SVM
n kernel function           : replace the inner 

product
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Similarity Measurement between Similarity Measurement between NEsNEs

nn Dynamic Time Warping (DTW) algorithmDynamic Time Warping (DTW) algorithm
n Alignment of two word sequences

(w1n, w2m)

(w14, w23)

w2m

w2M

w21

w11 w1N w1n

nn GivenGiven
n point-by-point distance

n To find an optimal path
n Minimize accumulated 

distance along the path
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An Example An Example ---- similarity between similarity between ““Oct 1 binding proteinOct 1 binding protein”” and and 
““NF kappa B binding proteinNF kappa B binding protein””

Distances between words

proteinbindingBkappaNF

0.250.250.710.50.5Oct

110.67111

0.2500.710.50.5binding

00.250.710.50.5protein

Accumulated distances

proteinbindingBkappaNF

2.211.961.7110.5Oct

2.962.671.671.51.51

1.921.672.2122binding

1.671.922.712.52.5protein
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proteinbindingBkappaNF
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Accumulated distances

proteinbindingBkappaNF

2.211.961.7110.5Oct

2.962.671.671.51.51

1.921.672.2122binding

1.671.922.712.52.5protein

Accumulated distances

proteinbindingBkappaNF

2.211.961.7110.5Oct

2.962.671.671.51.51

1.921.672.2122binding

1.671.922.712.52.5protein

Accumulated distances

proteinbindingBkappaNF

2.211.961.7110.5Oct

2.962.671.671.51.51

1.921.672.2122binding

1.671.922.712.52.5protein

Distance 
between the two 
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Representativeness Measurement for NERepresentativeness Measurement for NE

nn Representativeness of Representativeness of NENEii in in NESetNESet
n NESet = {NE1, … NEi , … NEN}
n Quantified by its density
n The average similarity between NEi and the other NEj

(j≠i ) in NESet

nn Most representative NEMost representative NE
n Largest density among all NEs in NESet
n centroid of NESet
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3. Diversity Criterion3. Diversity Criterion

Maximize the training utility of a batch: the members in the 
batch have high variance to each other

Only one work [Brinker 2003] considered this criterion.
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Global ConsiderationGlobal Consideration
n Consider the examples in a whole sample space
n K-Means Clustering

n Cluster all named entities in NESet
n Suppose: 

n the examples in one cluster are quite similar to each other

n Select the examples from different clusters at a time

n Time consuming
n Compute the centroids of clusters
n Repartition examples

n For efficiency, filter out NEs before clustering



2004-7-15 EGK Colloquium 21

Local ConsiderationLocal Consideration
nn Consider the examples in a batchConsider the examples in a batch
nn For an example candidate:For an example candidate:

n Compare it with all previously selected examples in the 
batch one by one

n Add it into the batch
n If the similarity between all of them is below a threshold

nn Threshold:Threshold:
n The average of the pairwise similarities in NESet

nn Example candidate selection:Example candidate selection:
n Certain measurement

nn More efficient!More efficient!
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Unlabeled Data Set

Strategy 1Strategy 1

Intermediate Set

Clustering (K clusters)
(Diversity Criterion)

Batch

Select centroid of each cluster
(Representativeness Criterion)

Select M most informative examples
(Informativeness Criterion)
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Strategy 2Strategy 2
Unlabeled Data Set

Batch

Select example with max score:
? Info+(1- ?)Rep

(Informativeness & 
Representativeness Criteria)

Compare the candidate with each example in Batch
IF any of the similarity values > threshold  
THEN reject
ELSE add to Batch

(Diversity Criterion)

example 
candidate
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Data SetData Set

nn Newswire DomainNewswire Domain
n MUC-6 Corpus
n 438 Wall Street Journal articles
n To recognize Person, Location and Organization

n Biomedical Domain
n GENIA Corpus V1.1
n 670 MEDLINE abstracts
n To recognize Protein



2004-7-15 EGK Colloquium 27

Experimental Setting 1Experimental Setting 1
nn Corpus SplitCorpus Split

n Initial training data set
n Test data set
n Unlabeled data set
n Size of each data set

nn Batch size Batch size KK
n = 50 in biomedical domain
n = 10 in newswire domain

nn Example unitExample unit
n a named entity
n its context (previous 3 words and next 3 words)
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Corpus SplitCorpus Split

ORG

LOC 7809 Sent.
(157K words)

602 Sent.
(14K words)

5 Sent.
(130 words)

MUC-6
PERNews

8004 Sent.
(223K words)

900 Sent.
(26K words)

10 Sent.
(277 words)

GENIA 1.1PRTBio

Unlabeled SetTest SetInitial Training SetCorpusClassDomain
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Experimental Setting 2Experimental Setting 2

nn Supervised learningSupervised learning
n trained on the entire annotated corpus.
n Newswire: 408 WSJ articles
n Biomedical: 590 MEDLINE abstracts

nn Random SelectionRandom Selection
n a batch of examples is randomly selected in 

each round 

nn FF--MeasurementMeasurement
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Experimental Results 1Experimental Results 1
nn Effectiveness of SingleEffectiveness of Single--CriterionCriterion--based Active Learningbased Active Learning

Supervised 
(223K)

Random
(83K)

Info_based
(52K, 62%,23%)
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Experimental Results 2Experimental Results 2
nn Overall Results of MultiOverall Results of Multi--CriteriaCriteria--based Active Learningbased Active Learning

7.8K9.5K20.2K157K (F=86.0)ORG

2.1K3.5K13.6K157K (F=73.5)LOC

3.5K4.2K11.5K157K (F=90.4)PERNews

31K40K83K223K (F=63.3)PRTBio

Strategy2Strategy1RandomSupervisedClassDomain
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Experimental Results 3Experimental Results 3
nn Effectiveness of MultiEffectiveness of Multi--CriteriaCriteria--based Active Learningbased Active Learning

Info_Min
(52K)

Strategy1
(40K, 77%)

Strategy2
(31K, 60%)

Supervised
(223K)
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Contribution 1Contribution 1
nn MultiMulti--CriteriaCriteria--based active learningbased active learning

n The first work -- incorporate the 
informativeness, representativeness and 
diversity criteria all together

n Effective strategies: combine the criteria
n Strategy 1: Info. + clustering (Rep. & Div.)
n Strategy 2: Linear interpolation (Info. & Rep.) +pair-

wise comparison in a batch (Div.)

n Outperform single-criterion-based method
n 60% of training data are required
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Contribution 2Contribution 2
nn Active learning for NERActive learning for NER

n The first work -- incorporate active learning in 
NER

n Various measurements: quantify the criteria
n Informativeness, Representativeness and Diversity

n Compare with supervised learning and random 
selection:

28%

37%

Random

5%Newswire

14%Biomedical

Supervised
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Contribution 3Contribution 3
nn General measurements and strategiesGeneral measurements and strategies

n Measurements: for word sequence
n Active learning strategy: task independent
n Can be easily adapted to other NLP tasks 

n Text chunking
n POS tagging
n Statistically parsing
n …

n Can be applied to other machine learning 
approaches
n Boosting algorithm
n …
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Future WorkFuture Work

n How to automatically decide the optimal 
value of these parameters?
n Batch size K
n Linear interpolation parameter 

n When to stop the active learning process?
n the change of support vectors

?



The EndThe End

Thank You !Thank You !


