
Multi-dimensional Graph Configuration
for Natural Language Processing

Ralph Debusmann1, Denys Duchier2, and Marco Kuhlmann1

1 Programming Systems Lab, Saarland University, Saarbrücken, Germany
{rade,kuhlmann}@ps.uni-sb.de

2 Équipe Calligramme, LORIA, Nancy, France
duchier@loria.fr

Abstract. We introduce the new abstract notion of multi-dimensional
lexicalized graph configuration problems, generalising over many impor-
tant tasks in computational linguistics such as semantic assembly, surface
realization and syntactic analysis, and integrating them. We present Ex-
tensible Dependency Grammar (XDG) as one instance of this notion.

1 Introduction

A variety of tasks in computational linguistics can be regarded as configuration
problems (cps) [1]. In this paper, we introduce the notion of lexicalised, multi-
dimensional cps, a particular class of configuration problems that both has a
wide range of linguistic applications, and can be solved in a straightforward way
using state-of-the-art constraint programming technology. Linguistic modeling
based on multi-dimensional cps brings two major benefits: complete modularity
of the developed resources, and tight integration of the individual modules.

We first consider configuration problems where the input is a set of com-
ponents, and the output is a valid assembly of these components that satisfies
certain problem-specific constraints. We then broaden the perspective to permit
ambiguity as to the choice of each component. We call a configuration problem
lexicalized when, as is the case in typical linguistic applications, this ambiguity
is stipulated by a lexicon. Finally, to permit modeling with multiple levels of
linguistic description (e.g. syntax, linear precedence, predicate/argument struc-
ture . . .), we introduce the notion of a multi-dimensional configuration problem
where we must simultaneously solve several configuration problems that are not
independent, but rather constrain each other.

We then provide an introduction to Extensible Dependency Grammar (xdg)
which is a development environment for linguistic modeling embracing the ap-
proach of lexicalised, multi-dimensional cps.

The methodology based on lexicalized, multi-dimensional configuration prob-
lems is attractive for several reasons: for linguistic modeling, it is possible, for
each level of linguistic description, to design a dimension that is especially well
suited to it. For constraint-based processing, an inference on any dimension may
help disambiguate another.

2

2 Configuration Problems in NLP

In this section, we develop the point that many tasks in computational linguistics
can be usefully regarded as instances of configuration problems. We illustrate this
point with three representative examples for which we have developed constraint-
based processing techniques: semantic assembly, surface realization, and syntax
analysis.

2.1 Semantic Assembly

We first turn to the task of assembling the semantic representation of a sentence
from the individual fragments of representation contributed by its words in the
context of scope ambiguity. Consider the following sentence:

(1) Every researcher deals with a problem.

This sentence has two readings, which may be disambiguated by the following
continuations:

(1a) . . . Some of these problems may be unsolvable.
(1b) . . . This problem is his funding.

If represented in terms of Montague-style semantics, the two readings could be
rendered as follows:

∀x : researcher(x) → ∃y : problem(y) ∧ (deal with)(x, y) (1a)
∃y : problem(y) ∧ ∀x : researcher(x) → (deal with)(x, y) (1b)

Notice that both these terms are made up of exactly the same “material”:

∀x : (researcher(x) → . . .) ∃y : (problem(y) ∧ . . .) (deal with)(x, y)

The only difference between the two is the relative ordering of these term frag-
ments: in (1a), the universal quantifier takes scope over the existential quantifier;
in (1b), it is the other way round. Formalisms for scope underspecification [2–4]
aim for a compact representation of this kind of ambiguity: they can be used to
describe the common parts of a set of readings, and to express constraints on
how these fragments can be “plugged together”.

The left half of Fig. 1 shows an underspecified graphical representation of
the two readings of 1 in the formalism of dominance constraints [4]. The solid
edges in the picture mark the term fragments that are shared among all readings.
Two fragments can combine by “plugging” one into an open “hole” of the other.
The dashed edges mark dominance requirements, where dominance corresponds
to ancestorship. For instance, the fragments for “every researcher” and for “a
problem” dominate the “deal with” fragment, i.e. both must be ancestors of the
latter. With the given dominance requirements, exactly two configurations of the
fragments are possible (shown schematically in the right half of Fig. 1); these
two configurations correspond to the readings (1a) and (1b).

3

lam

@

@

@

@ var

vardeal with

every researcher

lam

@

@

a problem

every
researcher

a problem

deal with

a problem

every
researcher

deal with

Fig. 1. A dominance constraint for the two readings of (1), and its two solutions

2.2 Surface realisation

Surface realisation is the sub-task of natural language generation that maps a
semantic representation to a grammatical surface string. More specifically, for
some given grammar, surface realisation takes as its input a bag of semantic de-
scriptions, φ, and returns as its output a syntax tree containing the verbalisation
of φ.

Here we discuss surface realisation for Tree Adjoining Grammar (tag) [5].
One of the underlying design principles of many tag grammars is semantic
minimality : each lexical entry (elementary tree) of a tag grammar corresponds
to an atomic semantics. Surface realisation then can be reduced to the problem
of selecting for each semantic atom a matching elementary tree, and assembling
these trees into a derivation tree using the standard tag operations that combine
grammatical structures, namely substitution and adjunction [6].

We illustrate this by means of an example. Assume that we want to realise
the following (event-based) input semantics using some given tag grammar G:

x = Peter , see(e, x, y), some(x), fat(x), rabbit(x) .

(Note that all atoms are considered to be ground.) In a first step, we need to
choose for each of the semantic atoms an elementary tree from G that verbalises
its semantics. A sample selection of trees is shown in the left half of Fig. 2. The
dashed arrows in the figure indicate a way to compose the chosen elementary
trees by means of substitution and ajunction. For example, the tree realising the
semantic atom fat(x) can adjoin into the root node (labelled with N) of the tree
realising the semantics of rabbit(x). The right half of Fig. 2 shows the resulting
derivation tree for the sentence. In a post-processing step, this derivation tree
can be transformed into a derived tree, whose yield is a possible realisation of
the intended semantics.

2.3 Syntactic Analysis

Our final example is the parsing of dependency grammars. As we have seen,
surface realisation can be reduced to the configuration of a labelled tree in which

4

S

NP↓ VP

V NP↓

saw NP

Det N↓

a

NP

Peter

N

rabbit

N

N*Adj

fat

see(e,x,y)

fat(x) rabbit(x)

x = Peter

some(x) aPeter saw rabbit

NP2NP1

N

fat

N

x = Peter see(e,x,y) some(x) fat(x) rabbit(x)

Fig. 2. Generation

the nodes are labelled with lexical entries (elementary trees), and the edges are
labelled with sites for substitution and adjunction. It has often been noted that
these derivation trees closely resemble dependency trees.

A dependency tree for a sentence s is a tree whose nodes are labelled with the
words of s, and whose (directed) edges are labelled with antisymmetric grammat-
ical relations (like subject-of or adverbial-modifier-of). Given an edge u −ρ→ v
in a dependency tree, u is called the head of u, and v is called the dependent of v.
ρ is the grammatical relation between the two. A dependency grammar consists
of a lexicon and a valency assignment for the lexical entries that specifies the
grammatical relations a given entry must or may participate in as head and as
dependent. A dependency tree is licensed by a given grammar if for every edge
u −ρ→ v, the relation ρ is a grammatical relation licensed by both the lexical
entries for u and v.

ein Buch hat der Student gelesen

det
det

subj obj

vpp
Lexical entry incoming outgoing

ein {det} {}
Buch {subj, obj} {det}
hat {} {subj, vpp}
der {det} {}
Student {subj, obj} {det}
gelesen {vpp} {obj}

Fig. 3. A dependency tree for the German sentence

The left half of Fig. 3 shows a dependency tree for the sentence

(2) Ein Buch hat der Student gelesen.

5

The right half of the figure shows a valency assignment with which this tree
would be licensed: it specifies possible incoming edges and required outgoing
edges. For example, the lexical entry for Student can act both as a subject and
an object dependent of its head, and itself requires a dependent determiner.

3 Graph Configuration Problems

The problems described in the previous section have this in common: the task
is always one where we are given a number of tree (or graph) fragments, and we
must plug them together (under constraints) to obtain a complete assembly. We
call this class of problems graph configuration problems.

For such problems, it is often convenient to represent the plugging of a frag-
ment w into another w′ by means of a directed labeled edge w−−→` w′ which
makes explicit that a resource of type ` supplied by w′ is being matched with a
corresponding need in w.

We are thus led to the notion of (finite) labeled graphs. Consider given a
finite set L of labels. A L-labeled graph (V,E) consists of a set V of nodes and
a set E ⊆ V × V ×L of directed labeled edges between them. We can interpret
each label ` as a function from node to set of nodes defined a follows:

`(w) = {w′ | w−−→` w′ ∈ E}

`(w) represents the set of immediate successors of w that can be reached by
traversing an edge labeled `. Duchier [7] developed this set-based approach and
showed e.g. how to formulate a constraint system that precisely characterizes all
labeled trees which can be formed from the finite set of nodes V and the finite
set of edge labels L. This system is formulated in terms of finite set variables
`(w), daughters(w), down(w), eqdown(w) and roots:

V = roots]]{daughters(w) | w ∈ V }
∧ |roots| = 1
∧ ∀w ∈ V

(∀` ∈ L `(w) ⊆ V)
∧ eqdown(w) = {w}] down(w)
∧ down(w) = ∪{eqdown(w′) | w′ ∈ daughters}
∧ daughters =]{`(w) | ` ∈ L}

(3)

By taking advantage of the constraint programming support available in a lan-
guage such as Mozart/Oz, this formal characterization of finite labeled trees can
be given straightforwardly a computational interpretation.

Using this approach as a foundation, we can encode graph configuration
problems with additional constraints. For example, each node typically offers a
specific subset of resources. Such a restriction can be enforced by posing con-
straints on the cardinality of `(w) (for ` ∈ L), e.g. |`(w)| = 0 for a resource not
offered by w, |`(w)| = 1 for a resource offered exactly once, etc. . . This is how
we can model subcategorization in the application to dependency parsing.

6

4 Lexicalized Configuration Problems

The view presented sofar, where we are given a fixed number of fragments to be
plugged together into a fully configured assembly, is not yet sufficient to capture
realistic tasks. In the surface realization problem, there may be several alter-
native ways to verbalize the same semantic element. Similarly, in the syntax
analysis problem, one word may have several readings, alternative subcatego-
rization frames, alternative linearization constructions.

We generalize the previous view by replacing each fragment with a finite
collection of fragments from which one must be selected. Since the mapping
from nodes to collection of alternative fragments is often stipulated by a lexicon,
we call such problems lexicalized configuration problems.

The challenge is now to adapt the constraint-based approach outlined earlier
to gracefully handle lexical ambiguity.

4.1 Selection constraints

Let’s consider again the dependency parsing application. As described in the
previous section, for a given set V of words, we can (a) model the possible
dependency trees as the solutions of constraint system (3), and (b) we can enforce
subcategorization frames using cardinality constraints on `-daughter sets `(w).

If we now assume that w has k lexical entries, each one may stipulate a
different cardinality constraint for `(w). Clearly, in order to avoid combinatorial
explosion, we do not want to try all possible combinations of selection for the
given words. Instead, we would like to take advantage of constraint propagation
to avoid having to make non-deterministic choices.

What we want is an underspecified representation of the lexical entry that is
ultimately chosen in a form that integrates well in a constraint-based formula-
tion. This is the purpose of the selection constraint :

X = 〈Y1, . . . , Yn〉[I]

Its declarative semantics is X = YI . All of X, Yi and I may be variables and
propagation takes place in both directions: into X in a manner similar to con-
structive disjunction, and into I whenever a Yk becomes incompatible with X
(and thus k can be removed from the domain of I).

We have implemented support for selection constraints for integer variables
(FD) and integer set variables (FS). This support can easily be lifted over feature
structures as follows:〈 f1 = v1

1
...

fp = v1
p

 , . . . ,

 f1 = vk
1

...
fp = vk

p

〉
[I] =

 f1 = 〈v1
1 , . . . , vk

1 〉[I]
...

fp = 〈v1
p, . . . , vk

p〉[I]

 (4)

and, in this manner, can apply to complex lexical entries. Notice how features
f1 through fp are constrained by concurrent selection constraints which are all
covariant because they share the same selector I.

7

5 Multi-dimensional Configuration Problems

Sofar, we have informally introduced the notion of lexicalized graph configuration
problems and suggested how they can be encoded into systems of contraints that
are adequately supported by corresponding constraint technology.

However, when modeling language, we must contend with multiple descrip-
tive levels (e.g. syntax, linear precedence, predicate/argument structure, infor-
mation structure, etc. . .). Each is concerned with a different aspect of linguistic
description, yet they are not independent: they interact and constrain each other.

Our notion of lexicalized configuration problems is an excellent tool for mod-
eling each individual descriptive level, but, as we said, these levels are not in-
dependent. For this reason, we now propose a generalized approach where we
have several configuration problems, all simultaneously constrained by the same
lexical entries.

This is what we call a multi-dimensional configuration problem. For each
descriptive level, there is one dedicated dimension. Every lexical entry now con-
tains a sub-lexical entry for each dimension. In this manner, each lexical entry
simultaneously constrains all dimensions. Furthermore, we also permit inter-
dimensional principles, i.e. global constraints that relate one dimension with
another. In this manner, they are not merely coupled through the lexicon, but
also by linguistically motivated well-formedness relations.

Figure 4 illustrates the selection constraint operating simultaneously on 3
dimensions over 3-dimensional lexical entries.

i

Cᵢ

Bᵢ

A₆

₅₄₃₂₁ ₆

Aᵢ
B₆

C₆

Fig. 4. Multi-dimensional selection

An important methodological motivation for the generalisation to multi-dim-
ensional graph configuration problems is the desire to obtain a modular and scal-
able framework for modeling linguistic phenomena. We now illustrate the idea
with the dependency analysis of word order phenomena in German. Consider
again the parsing example sentence from Section 2:

8

(5) Ein Buch hat der Student gelesen.

It illustrates object topicalisation in German. Starting from the “canonically”
ordered sentence Der Student hat ein Buch gelesen, it may be construed as the
result of the fronting of ein Buch (the object of the verb), and a successive move-
ment of der Student (the subject) to the now vacant object position – but a far
more natural and perspicuous account is obtained when separating constituency
and linear precedence, and describing word order variation as a relation between
those two structures. Fig. 5 shows the analysis of the sentence using Topological
Dependency Grammar (tdg, [8]) which dedicates one dimension to immediate
dominance (id) and another to linear precendence (lp).

Each dimension has its own set of well-formedness conditions (principles):
both id and lp structures are required to be trees, but lp structures must also be
ordered and projective. Moreover, a multi-dimensional principle called climbing
constrains the lp tree to be a flattening of the id tree.

ein Buch hat der Student gelesen

det
det

subj obj

vpp

(a) Immediate Dominance

ein Buch hat der Student gelesen

nvf

nvf

mf
vf vcf

(b) Linear Precedence

Fig. 5. Topicalisation

The parsing task of Topological Dependency Grammar is an example for a
multi-dimensional graph configuration problem according to the characterisa-
tion above: to find the structures licensed by a given input, one has to find all
triples (V, Tid, Tlp) in which Tid is a licensed id tree, Tlp is a licensed lp tree, the
two trees share the same node set V , and the climbing relation holds between
them. Section 6 describes xdg which is an extended version of this model with
additional dimensions for deep syntax, predicate/argument structure, and scope.

How does the multi-dimensional graph model relate to other approaches?
With various multi-stratal formalisms, like Lexical Functional Grammar (lfg)
[9] and Meaning-Text Theory (mtt) [10], it shares the idea of distinguishing sev-
eral representational structures. In contrast to these formalisms, however, it does
not presuppose a layered representation (where only adjacent layers can share
information directly), nor does it assume that information can only flow in one
direction: multi-dimensional principles can connect arbitrary dimensions. How-
ever, given that all dimensions share the same set of nodes, multi-dimensional

9

graphs also exhibit many of the benefits that arise through the tight integration
of information as it is obtained in mono-stratal formalisms like hpsg [11].

6 Extensible Dependency Grammar

In this section, we introduce Extensible Dependency Grammar (xdg) [12], our
flagship instance of a lexicalized multi-dimensional configuration problem. xdg
is a generalization of tdg. It supports the use of arbitrary many dimensions
of linguistics representation, and of arbitrary principles3 regulating the well-
formedness conditions. xdg was devised to be maximally general, and allow the
grammar writer the freedom to decide how to split up linguistic modeling into
separate dimensions.

6.1 Example

As an illustrative example, we propose a five-dimensional grammar and illustrate
it on the following example, an English passive construction paraphrasing the
ubiquitous linguistic example “Every man loves a woman”:

By every man, a woman is loved. (6)

In the following, we give a quick tour through the five dimensions of our example
grammar to see what aspects of the linguistic analysis of this sentence they cover.

ID dimension The id dimension (where id stands for immediate dominance)
was already introduced for tdg, and represents the linguistic aspect of gram-
matical function. We display the id analysis of the example below:.

By every man a woman is loved

pcomp

det

det

subj vpp

pobj

(7)

Here, “woman” is the subject (edge label subj) of the finite verb “is”. “a” is
the determiner (edge label det) of “woman”. “loved” is the verbal past partici-
ple (vpp) of “is”. Moreover, “by” is the prepositional object (pobj) of “loved”,
“man” the prepositional complement (pcomp) of “by”, and finally “every” the
determiner of “man”.
3 Currently instantiated from a library of parametric principles.

10

LP dimension The lp dimension (lp stands for linear precedence) represents
the linguistic aspect of word order, and has also already been introduced in the
preceding section for tdg. On the lp dimension, the edge labels are names for
word positions4: .

By every man a woman is loved

pf

detf
nounf detf

nounf
finf

infinf

pcompf

detf

detf

subjftopf vppf

(8)

Here, the finite verb “is” is the root. “by” is in the topicalization position (topf),
“woman” in the subject position (subjf), and “loved” in the verbal past participle
position (vppf). Furthermore, “man” is in the prepositional complement position
of “by” (pcompf), and “every” in the determiner position of “man” (detf). Sim-
ilarly, “a” is in the determiner position of “woman” (detf).

On the lp dimension, we additionally annotate the nodes with node labels
(displayed on the dotted projection edges connecting nodes and words). These
are required for specifying the relative order of mothers and their daughters, e.g.
that a determiner in the determiner position (edge label detf) of a noun must
precede the noun (node label nounf).

DS dimension The ds dimension (ds stands for deep syntax) represents an
intermediate structure between syntax and semantics. In this dimension, e.g.
function words such as the preposition “by” or “to”-particles are not connected
since they have no impact on the semantics. Also, constructions such as control,
raising and passive are already resolved on the ds dimension, to enable a more
seamless transition to semantics. Below is an example ds analysis:5:.

By every man a woman is loved

detd detd

subd

objdsubjd (9)

Here, “loved” is subordinated to “is” (edge label subd). “man” is the deep
subject (subjd) of “loved”, and “woman” the deep object (objd). “every” is the
4 Following work on tdg, we adopt the convention to suffix lp edge labels with “f”

for “field” to better distinguish them from id edge labels.
5 We adopt the convention to suffix ds edge labels with “d” for “deep” to better

distinguish them from id edge labels.

11

determiner of “man”, and “a” the determiner of “woman”. Notice that in this
example, the relations of deep subject and deep object do not match the relations
of subject and prepositional object on the id dimension, due to the passive
construction. Whereas in the id analysis, “woman” is the subject of the auxiliary
“is”, and “by” the prepositional object of “loved”, the ds analysis mirrors the
underlying predicate-argument structure much more closely. Here, “woman” is
the deep object of “loved”, whereas “man” is its deep subject.

PA dimension The pa dimension (pa for predicate-argument structure) rep-
resents semantic predicate-argument structure, or, in terms of logic, variable
binding. The idea is that quantifiers such as the determiners “every” and “a”
introduce variables, which can then be bound by predicates (e.g. common nouns
or verbs): .

By every man a woman is loved

arg arg
arg1 arg2

(10)

In the example analysis, think of the quantifier “every” as introducing variable
x and “a” as introducing the variable y. Now, “man” binds the x, and “woman”
the y. Finally, the x is the first argument of the predicate expressed by “loved”,
and y is the second argument. I.e. the pa analysis represents a flat semantics in
the sense of [13], where the semantics of a sentence is represented by a multiset
of first order predicates, and scopal relationships are completely omitted:

{every(x),man(x), a(y),woman(y), love(x, y)} (11)

SC dimension The sc dimension (sc for scope structure) represents semantic
scope structure. Contrary to [13], who advocates a semantic representation which
completely omits scopal relationships, we follow of Minimal Recursion Semantics
(MRS) [3] and have both: the pa dimension represents a flat semantics, and the
sc dimension the scopal relationships. Here, e.g. quantifiers such as “every” and
“a” have a restriction and a scope: .

By every man a woman is loved

r s

rs
(12)

12

“a” has “woman” in its restriction (edge label r), and “every” in its scope
(edge label s), and “every” has “man” in its restriction, and “loved” in its scope.
Notice that this is only one of the two possible scope readings of the sentence
— the “strong” reading where the existential quantifier outscopes the universal
quantifier. The sc analysis representing the other, “weak” reading is depicted
below:

.

By every man a woman is loved

r s

r s
(13)

6.2 Principles and the lexicon

XDG describes the well-formedness conditions of an analysis by the interaction
of principles and the lexicon. The principles stipulate restrictions on one or more
of the dimensions, and are controlled by the feature structures assigned to the
nodes from the lexicon. The principles are drawn from an extensible principle
library. The principle library already contains the necessary principles to model
the syntax and semantics for large fragments of German and English, and smaller
fragments of Arabic, Czech and Dutch. We present a representative subset of it
below.

Tree principle. Dimension i must be a tree. In the example above, we use this
principle on the id, lp and sc dimensions.

DAG principle. Dimension i must be a directed acyclic graph. We use this
principle on the ds and pa dimensions, which need not necessarily be trees.

Valency principle. For each node on dimension i, the incoming edges must be
licensed by the in specification, and the outgoing edges by the out specification.
This is a key principle in xdg, and used on all dimensions. It is also lexicalized
(cf. the lexical entries for tdg in the preceding section).

Order principle. For each node v on dimension i, the order of the daughters
depends on their edge labels. We use this principle on the lp dimension to
constrain the order of the words in a sentence. We can use it e.g. to require that
determiners (“a”) precede nouns (“woman”).

Projectivity principle. Dimension i must be a projective graph. We use this
principle on the lp dimension to ensure that lp trees do not have crossing
edges.

13

Climbing principle. The climbing principle is two-dimensional, and allows us to
constrain the relation between two dimensions. It stipulates that dimension i
must be flatter than dimension j. We use it to state that the lp dimension (8)
must be flatter than the id dimension (7).

Linking principle. The linking principle relates two dimensions i and j, and in
particular allows us to specify how semantic arguments must be realized in the
syntax. It is lexicalized, and we use it to stipulate e.g. that the first argument
(arg1) of “loved” on the pa dimension (10) must be realized by the deep subject
(subjd), and the second argument (arg2) by the deep object (objd) on the ds
dimension (9).

Contra-dominance principle. The contra-dominance is also two-dimensional. We
use it to constrain the relation between the two semantic dimensions pa and sc,
in particular to stipulate that the semantic arguments of verbal predicates (on
the pa dimension) must dominate them on the sc dimension. For instance, the
first semantic argument of “loved” on the pa dimension (in (10), this is the
determiner “every” of the NP “every man”) must dominate (be an ancestor of)
“loved” on the sc dimension (12) and (13).

6.3 Parsing and generation

Parsing and generation with XDG grammars is done using constraint solving by
the XDG solver. XDG solving has a natural reading as a constraint satisfaction
problem (CSP) on finite sets of integers, where well-formed analyses correspond
to the solutions of the CSP [7]. We have implemented the XDG solver with the
Mozart/Oz programming system [14], [15].

XDG solving operates on all dimensions concurrently. This means that the
solver can infer information about one dimension from information on any other,
e.g. by the multi-dimensional principles (climbing, linking, contra-dominance).
For instance syntactic information can trigger inferences in semantics, and vice
versa.

Because XDG allows us to write grammars with completely free word order,
XDG solving is an NP-complete problem [6]. This means that the worst-case
complexity of the solver is exponential at present. However, the behaviour of
the solver on NL grammars is excellent in practice. Constraint propagation is
both fast and very effective, and permits to enumerate solutions with few or no
failures.

6.4 Underspecification

Similar to MRS and also CLLS, xdg supports the use of underspecification. An
underspecified xdg analysis is a partial xdg dependency graph where not all of
the edges are fully determined. We show an underspecified xdg analysis for the

14

sc dimension below: .

By every man a woman is loved

r r

s
s

(14)

In this analysis, the edges from “every” to “man” (labeled r) and from “a”
to “woman” (also labeled r) are already determined, i.e. we know already that
“man” is in the restriction of “every”, and that “woman” is in the restriction of
“a”. However, the scopal relationship between the two quantifiers is yet unknown.
Still, the xdg constraint solver has already inferred that both dominate the verb
“loved” (as indicated by the dotted “dominance edge”). This partial analysis
abstracts over both fully specified analyses (12) and (13) above.

Whereas in MRS and CLLS, only scopal relationships can be underspecified,
xdg goes one step further and allows to underspecify any of its dimensions, i.e.
not only the scopal but also the syntactic dimensions. This can be used e.g. to
compactly represent PP-attachment ambiguities.

7 Conclusion

We proposed a notion of lexicalized multi-dimensional configuration problems
as a metaphor and a practical constraint-based approach for a wide range of
tasks in computational linguistics, including semantic assembly, surface realiza-
tion and syntactic analysis, and how it can be used to integrate them. We then
presented XDG as an instance of this approach, and showed how to use it to
integratively handle syntax and semantics of natural language. We think that
multi-dimensional lexicalized configuration problems can play an important role
in the future, as an overarching framework for computational linguistics research,
on the theoretical and on the algorithmic side. For instance, research on con-
figuration problems for semantic assembly have already yielded highly efficient
algorithms for satisfiability and enumeration of dominance constraints [16]. For
surface realization, an efficient algorithm was presented in [6]. At the moment,
we are working on making the integrated processing of syntax and semantics in
XDG more efficient.

References

1. Mittal, S., Frayman, F.: Towards a generic model of configuration tasks. In:
Proceedings of the International Joint Conference on Artificial Intelligence, Morgan
Kaufmann (1989) 1395–1401

2. Bos, J.: Predicate logic unplugged. In: Proceedings of the 10th Amsterdam Collo-
quium. (1996) 133–143

15

3. Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics.
an introduction. Journal of Language and Computation (2004) To appear.

4. Egg, M., Koller, A., Niehren, J.: The constraint language for lambda structures.
Journal of Logic, Language, and Information (2001)

5. Abeillé, A., Rambow, O.: Tree Adjoining Grammar: An Overview. In: Tree Adjoin-
ing Grammars: Formalisms, Linguistic Analyses and Processing. CSLI Publications
(2000)

6. Koller, A., Striegnitz, K.: Generation as dependency parsing. In: Proceedings of
ACL 2002, Philadelphia/USA (2002)

7. Duchier, D.: Configuration of labeled trees under lexicalized constraints and prin-
ciples. Research on Language and Computation 1 (2003) 307–336

8. Duchier, D., Debusmann, R.: Topological dependency trees: A constraint-based
account of linear precedence. In: Proceedings of ACL 2001, Toulouse/FRA (2001)

9. Bresnan, J., Kaplan, R.: Lexical-functional grammar: A formal system for gram-
matical representation. In Bresnan, J., ed.: The Mental Representation of Gram-
matical Relations. The MIT Press, Cambridge/USA (1982) 173–281

10. Mel’čuk, I.: Dependency Syntax: Theory and Practice. State Univ. Press of New
York, Albany/USA (1988)

11. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago/USA (1994)

12. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.:
A relational syntax-semantics interface based on dependency grammar (2004)

13. Trujillo, I.A.: Lexicalist Machine Translation of Spatial Prepositions. PhD thesis,
University of Cambridge, Cambridge/USA (1995)

14. Smolka, G.: The Oz Programming Model. In van Leeuwen, J., ed.: Computer
Science Today. Lecture Notes in Computer Science, vol. 1000. Springer-Verlag,
Berlin (1995) 324–343

15. Mozart Consortium: The Mozart-Oz website (2004) http://www.mozart-oz.org/.
16. Fuchss, R., Koller, A., Niehren, J., Thater, S.: Minimal recursion semantics as

dominance constraints: Translation, evaluation, and analysis. In: Proceedings of
ACL 2004, Barcelona/ESP (2004)

